Distance Information Improves Heterogeneous Graph Neural Networks

计算机科学 编码 表现力 理论计算机科学 图形 节点(物理) 路径(计算) 人工神经网络 人工智能 生物化学 化学 结构工程 工程类 基因 程序设计语言
作者
Chuan Shi,Houye Ji,Zhiyuan Lu,Ye Tang,Pan Li,Cheng Yang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (3): 1030-1043 被引量:4
标识
DOI:10.1109/tkde.2023.3300879
摘要

Heterogeneous graph neural network (HGNN) has shown superior performance and attracted considerable research interest. However, HGNN inherits the limitation of expressive power from GNN via learning $individual$ node embeddings based on their structural neighbors, largely ignoring the potential correlations between nodes and leading to sub-optimal performance. How to establish correlations among multiple node embeddings and improve the expressive power of HGNN is still an open problem. To solve the above problem, we propose a simple and effective technique called heterogeneous distance encoding (HDE) to fundamentally improve the expressive power of HGNN. Specifically, we define heterogeneous shortest path distance to describe the relative distance between nodes, and then jointly encode such distances for multiple nodes of interest to establish their correlation. By simply injecting the encoded correlation into the neighbor aggregating process, we can learn more expressive heterogeneous graph representations for downstream tasks. More importantly, the proposed HDE relies only on the graph structure and ensures the inductive ability of HGNN. We also propose an efficient HDE algorithm that can significantly reduce the computational overhead. Significant improvements on both transductive and inductive tasks over four real-world graphs demonstrate the effectiveness of HDE in improving the expressive power of HGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xuan发布了新的文献求助10
1秒前
4秒前
阿亮完成签到 ,获得积分10
5秒前
Atticus发布了新的文献求助10
5秒前
cy发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助150
7秒前
芝士发布了新的文献求助10
7秒前
香蕉觅云应助HJJHJH采纳,获得10
8秒前
矮小的向雪完成签到 ,获得积分10
8秒前
三腔二囊管完成签到,获得积分10
8秒前
王圈完成签到,获得积分10
8秒前
孤独的乌龟完成签到,获得积分10
9秒前
LUK_完成签到,获得积分10
9秒前
11秒前
冷傲新柔完成签到,获得积分10
12秒前
13秒前
16秒前
科研通AI6应助ayumi采纳,获得10
17秒前
cy关闭了cy文献求助
17秒前
852应助哩蒜呐采纳,获得10
18秒前
NexusExplorer应助我必中采纳,获得10
18秒前
阿崔完成签到,获得积分10
18秒前
冷傲新柔发布了新的文献求助10
18秒前
汉堡包应助qq采纳,获得10
20秒前
20秒前
彭于晏应助辛勤的日记本采纳,获得30
20秒前
安详的夜蕾完成签到,获得积分10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
郭郝应助科研通管家采纳,获得10
21秒前
不配.应助科研通管家采纳,获得150
21秒前
研友_VZG7GZ应助xuan采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
pluto应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
Hello应助科研通管家采纳,获得10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143039
求助须知:如何正确求助?哪些是违规求助? 4341079
关于积分的说明 13519541
捐赠科研通 4181353
什么是DOI,文献DOI怎么找? 2292877
邀请新用户注册赠送积分活动 1293512
关于科研通互助平台的介绍 1236099