Distance Information Improves Heterogeneous Graph Neural Networks

计算机科学 编码 表现力 理论计算机科学 图形 节点(物理) 路径(计算) 人工神经网络 人工智能 生物化学 结构工程 基因 工程类 化学 程序设计语言
作者
Chuan Shi,Houye Ji,Zhiyuan Lu,Ye Tang,Pan Li,Cheng Yang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (3): 1030-1043
标识
DOI:10.1109/tkde.2023.3300879
摘要

Heterogeneous graph neural network (HGNN) has shown superior performance and attracted considerable research interest. However, HGNN inherits the limitation of expressive power from GNN via learning $individual$ node embeddings based on their structural neighbors, largely ignoring the potential correlations between nodes and leading to sub-optimal performance. How to establish correlations among multiple node embeddings and improve the expressive power of HGNN is still an open problem. To solve the above problem, we propose a simple and effective technique called heterogeneous distance encoding (HDE) to fundamentally improve the expressive power of HGNN. Specifically, we define heterogeneous shortest path distance to describe the relative distance between nodes, and then jointly encode such distances for multiple nodes of interest to establish their correlation. By simply injecting the encoded correlation into the neighbor aggregating process, we can learn more expressive heterogeneous graph representations for downstream tasks. More importantly, the proposed HDE relies only on the graph structure and ensures the inductive ability of HGNN. We also propose an efficient HDE algorithm that can significantly reduce the computational overhead. Significant improvements on both transductive and inductive tasks over four real-world graphs demonstrate the effectiveness of HDE in improving the expressive power of HGNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助西一阿铭采纳,获得10
刚刚
莫茹发布了新的文献求助10
刚刚
稳重的画板完成签到,获得积分10
2秒前
科研通AI2S应助张利双采纳,获得10
2秒前
椰青冰萃发布了新的文献求助20
3秒前
小蘑菇应助曾医生采纳,获得10
3秒前
4秒前
4秒前
邵邵完成签到,获得积分10
4秒前
7秒前
劉浏琉完成签到,获得积分10
8秒前
9秒前
Jiaowen发布了新的文献求助10
9秒前
10秒前
害羞的灵松完成签到,获得积分20
10秒前
Archer完成签到,获得积分10
11秒前
搜集达人应助乌托邦采纳,获得10
11秒前
Sunnut发布了新的文献求助30
12秒前
英姑应助研友_89jr6L采纳,获得10
13秒前
13秒前
chem完成签到,获得积分10
14秒前
七七七氟烷完成签到,获得积分20
14秒前
受伤雨南发布了新的文献求助10
15秒前
15秒前
爆米花应助念姬采纳,获得10
16秒前
西一阿铭发布了新的文献求助10
16秒前
大个应助Sunnut采纳,获得10
17秒前
我是老大应助Jiaowen采纳,获得10
18秒前
18秒前
19秒前
完美世界应助莫茹采纳,获得10
20秒前
小红帽完成签到,获得积分10
20秒前
21秒前
鱼干发布了新的文献求助10
21秒前
22秒前
上官若男应助ZM采纳,获得10
23秒前
马鑫燚完成签到,获得积分20
24秒前
24秒前
26秒前
shirley发布了新的文献求助30
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962898
求助须知:如何正确求助?哪些是违规求助? 3508858
关于积分的说明 11143641
捐赠科研通 3241777
什么是DOI,文献DOI怎么找? 1791659
邀请新用户注册赠送积分活动 873063
科研通“疑难数据库(出版商)”最低求助积分说明 803579