已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stacking Ensemble Learning–Based [18F]FDG PET Radiomics for Outcome Prediction in Diffuse Large B-Cell Lymphoma

人工智能 随机森林 集成学习 接收机工作特性 弥漫性大B细胞淋巴瘤 分割 计算机科学 机器学习 梯度升压 Boosting(机器学习) 核医学 模式识别(心理学) 医学 淋巴瘤 病理
作者
Shuilin Zhao,Jing Wang,Chentao Jin,Xiang Zhang,Chenxi Xue,Rui Zhou,Yan Zhong,Yuwei Liu,Xuexin He,Youyou Zhou,Caiyun Xu,Lixia Zhang,Wenbin Qian,Hong Zhang,Xiao‐Hui Zhang,Mei Tian
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine]
卷期号:64 (10): 1603-1609 被引量:9
标识
DOI:10.2967/jnumed.122.265244
摘要

This study aimed to develop an analytic approach based on [18F]FDG PET radiomics using stacking ensemble learning to improve the outcome prediction in diffuse large B-cell lymphoma (DLBCL). Methods: In total, 240 DLBCL patients from 2 medical centers were divided into the training set (n = 141), internal testing set (n = 61), and external testing set (n = 38). Radiomics features were extracted from pretreatment [18F]FDG PET scans at the patient level using 4 semiautomatic segmentation methods (SUV threshold of 2.5, SUV threshold of 4.0 [SUV4.0], 41% of SUVmax, and SUV threshold of mean liver uptake [PERCIST]). All extracted features were harmonized with the ComBat method. The intraclass correlation coefficient was used to evaluate the reliability of radiomics features extracted by different segmentation methods. Features from the most reliable segmentation method were selected by Pearson correlation coefficient analysis and the LASSO (least absolute shrinkage and selection operator) algorithm. A stacking ensemble learning approach was applied to build radiomics-only and combined clinical-radiomics models for prediction of 2-y progression-free survival and overall survival based on 4 machine learning classifiers (support vector machine, random forests, gradient boosting decision tree, and adaptive boosting). Confusion matrix, receiver-operating-characteristic curve analysis, and survival analysis were used to evaluate the model performance. Results: Among 4 semiautomatic segmentation methods, SUV4.0 segmentation yielded the highest interobserver reliability, with 830 (66.7%) selected radiomics features. The combined model constructed by the stacking method achieved the best discrimination performance. For progression-free survival prediction in the external testing set, the areas under the receiver-operating-characteristic curve and accuracy of the stacking-based combined model were 0.771 and 0.789, respectively. For overall survival prediction, the stacking-based combined model achieved an area under the curve of 0.725 and an accuracy of 0.763 in the external testing set. The combined model also demonstrated a more distinct risk stratification than the International Prognostic Index in all sets (log-rank test, all P < 0.05). Conclusion: The combined model that incorporates [18F]FDG PET radiomics and clinical characteristics based on stacking ensemble learning could enable improved risk stratification in DLBCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小丸子完成签到 ,获得积分10
1秒前
2秒前
对照完成签到 ,获得积分10
3秒前
5秒前
熊大完成签到,获得积分10
11秒前
12秒前
陌小石完成签到 ,获得积分10
12秒前
Snow完成签到 ,获得积分10
13秒前
14秒前
小卒完成签到 ,获得积分10
15秒前
16秒前
jade完成签到,获得积分10
16秒前
科研通AI2S应助二筒采纳,获得10
19秒前
大个应助爱科研的小导航采纳,获得10
20秒前
skyer1发布了新的文献求助10
21秒前
23秒前
24秒前
哈哈哈~发布了新的文献求助10
28秒前
莫名乐乐完成签到,获得积分10
28秒前
30秒前
会飞的小猪完成签到,获得积分0
31秒前
林利芳完成签到 ,获得积分10
31秒前
32秒前
ddn完成签到,获得积分10
32秒前
34秒前
35秒前
吴三岁完成签到 ,获得积分10
36秒前
Jasper应助ddn采纳,获得10
37秒前
skyer1完成签到,获得积分10
38秒前
无奈母鸡发布了新的文献求助10
41秒前
生生世世完成签到 ,获得积分10
41秒前
Zer完成签到,获得积分10
47秒前
大模型应助故城采纳,获得10
47秒前
俊逸海豚完成签到 ,获得积分10
48秒前
48秒前
Jasper应助月小小采纳,获得10
49秒前
jasmine发布了新的文献求助10
50秒前
宋江他大表哥完成签到,获得积分10
51秒前
快乐访旋完成签到 ,获得积分10
52秒前
55秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303128
求助须知:如何正确求助?哪些是违规求助? 2937418
关于积分的说明 8481942
捐赠科研通 2611331
什么是DOI,文献DOI怎么找? 1425790
科研通“疑难数据库(出版商)”最低求助积分说明 662434
邀请新用户注册赠送积分活动 646911