腐蚀
咪唑
喹啉
金属
化学
吡啶
吸附
缓蚀剂
组合化学
材料科学
有机化学
作者
Jia Wang,Lu An,Jun Wang,Jie Gu,Jian Sun,Xiaojuan Wang
标识
DOI:10.1016/j.cis.2023.103031
摘要
The acid solution is widely used in chemical cleaning, oil well acidifying, and other fields, which also brings the problem of metal corrosion that cannot be underestimated. However, adding an inhibitor is one of the most convenient and effective ways to slow down metal corrosion. N-heterocyclic compounds with high stability and durability, in line with the strategy of sustainable development, have been widely studied in an acidic environment. Imidazole, pyridine, and quinoline compounds, as the most commonly used corrosion inhibitors, can form a compact protective film via π electron cloud shifting towards the N atoms to generate coordination function. In particular, flexible modifiability makes N-heterocyclic compounds adapt to different corrosion environments readily, conducive to the formation of chemical bonds between compounds with metal surfaces to be better adsorption, so as to avoid the blemish of traditional inhibitors (such as inorganic salt and organic amines inhibitors) due to excessive usage, surface roughness of metal or environmental factor (for instance, temperature, pH and metallic) causing loose bonding between film and metal surface. More importantly, the efficient corrosion inhibition and toxicity of N-heterocyclic compounds have close to do with their own functional groups. Combined with the latest research achievement, the effects of different substituents on the corrosion inhibition and corrosion inhibition mechanisms were systematically reviewed in the acid-corrosive solution of imidazole, pyridine, and quinoline and their derivatives in this review article, respectively. In addition, the application and function of density functional theory in predicting the corrosion inhibition effect of corrosion inhibitors are also discussed. The future development trend was prospected according to the summarized research results.
科研通智能强力驱动
Strongly Powered by AbleSci AI