Artificial Neural Networks for Microwave Computer-Aided Design: The State of the Art

人工神经网络 计算机科学 电子工程 多物理 人工智能 工程类 结构工程 有限元法
作者
Feng Feng,Weicong Na,Jing Jin,Jianan Zhang,Wei Zhang,Qi‐Jun Zhang
出处
期刊:IEEE Transactions on Microwave Theory and Techniques [IEEE Microwave Theory and Techniques Society]
卷期号:70 (11): 4597-4619 被引量:83
标识
DOI:10.1109/tmtt.2022.3197751
摘要

This article presents an overview of artificial neural network (ANN) techniques for a microwave computer-aided design (CAD). ANN-based techniques are becoming useful for performing forward/inverse modeling for active/passive components to enhance a circuit design. With measured or simulated data of microwave devices, ANNs can be trained to learn relevant microwave relationships, which are, otherwise, computationally expensive or for which efficient analytical formulas are not available. Fundamental concepts of the ANN structure and training, such as feedforward neural networks (FFNNs), recurrent neural networks (RNNs)/dynamic neural networks (DNNs)/time-delay neural networks (TDNNs), deep neural networks, and neural network training and extrapolation, are described. Knowledge-based neural networks (KBNNs) are described for improving the accuracy and reliability of modeling and design optimization. Various advanced ANN techniques, such as neuro-transfer function (neuro-TF) modeling, neural network inverse modeling, and deep neural network modeling, are discussed. The existing and emerging applications of ANN in microwave CAD are identified, such as electromagnetic (EM)/multiphysics modeling, modeling of nonlinear circuits and transistors, filter design, very large-scale integration (VLSI) interconnects, oscillator, transmitter and receiver modeling, and CAD applications in such as gallium nitride (GaN) high electron-mobility transistor (HEMT), wireless power transfer (WPT), microelectromechanical system (MEMS), and substrate-integrated waveguide (SIW).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
longtengfei完成签到,获得积分10
1秒前
情怀应助dd采纳,获得10
1秒前
4秒前
wanqiaohehehe完成签到,获得积分10
4秒前
pokemon发布了新的文献求助10
5秒前
5秒前
elizabeth339发布了新的文献求助50
7秒前
zgd完成签到 ,获得积分10
7秒前
qhtwld完成签到,获得积分10
9秒前
自信问枫完成签到 ,获得积分10
10秒前
99完成签到,获得积分10
11秒前
公西凝芙完成签到,获得积分10
12秒前
12秒前
科目三应助哈哈采纳,获得10
13秒前
14秒前
兴奋渊思完成签到 ,获得积分10
15秒前
16秒前
宋宋完成签到,获得积分20
16秒前
SYLH应助Hermit采纳,获得10
16秒前
百事从欢发布了新的文献求助10
18秒前
深情安青应助念姬采纳,获得10
19秒前
清晨完成签到 ,获得积分10
19秒前
19秒前
Orange应助吕健采纳,获得10
20秒前
幽默的妍完成签到 ,获得积分10
20秒前
22秒前
22秒前
yookia应助wu采纳,获得10
24秒前
25秒前
26秒前
28秒前
科研通AI2S应助论文顺利采纳,获得10
28秒前
29秒前
30秒前
百事从欢完成签到,获得积分10
30秒前
打打应助stone采纳,获得10
30秒前
温柔以蓝完成签到,获得积分10
31秒前
乐宝完成签到,获得积分10
32秒前
小圆圈发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966955
求助须知:如何正确求助?哪些是违规求助? 3512400
关于积分的说明 11163031
捐赠科研通 3247238
什么是DOI,文献DOI怎么找? 1793759
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432