亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NDMFCS: An automatic fruit counting system in modern apple orchard using abatement of abnormal fruit detection

果园 目标检测 树(集合论) 人工智能 计算机科学 像素 数学 计算机视觉 园艺 模式识别(心理学) 生物 数学分析
作者
Zhenchao Wu,Xiaoming Sun,Hanhui Jiang,Weimin Mao,Rui Li,Nikita Andriyanov,Vladimir Soloviev,Longsheng Fu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:211: 108036-108036 被引量:6
标识
DOI:10.1016/j.compag.2023.108036
摘要

Automatic fruit counting is an important task for growers to estimate yield and manage orchards. Although many deep-learning-based fruit detection algorithms have been developed to improve performance of automatic fruit counting systems, abnormal fruit detection has often been caused by these algorithms detecting non-target fruits that have similar growth characteristics to target fruits. For abnormal fruit detection, detected fruits in the back row of the tree were defined as DFBRT, while detected fruits on the ground were defined as DFG. Both of them would result in a higher number of fruits counting than the ground truth. This study proposes an automatic fruit counting system called NDMFCS (Normal Detection Matched Fruit Counting System) to solve this problem for improving fruit counting accuracy in modern apple orchard. NDMFCS consists of three sub-systems, i.e. object detection based on You Only Look Once Version 4-tiny (YOLOv4-tiny), abatement of abnormal fruit detection based on threshold, and fruit counting based on trunk tracking and identity document (ID) assignment. YOLOv4-tiny was selected to implement detection of fruits and trunks, whose output is confidence and pixel coordinates of detected object. The DFBRT and DFG were abated by thresholds to improve detection performance of fruit. This meant that detected fruits were removed when their distance from camera is further than a distance threshold or the confidence of fruit detection is less than a confidence threshold. Finally, fruit counting was implemented by trunk tracking and ID assignment, where each fruit was assigned a unique tracking ID. Results on 10 sets of original videos indicated that average fruit detection precision was improved from 89.1% to 93.3% after abatement of abnormal fruit detection. Also, Multiple Object Tracking Accuracy and Multiple Object Tracking Precision were improved on average by 4.2% and 3.3%, respectively, while average ID Switch Rate was decreased on average by 1.1%. And average fruit counting accuracy was improved to 95.0% by 4.2%. Coefficient of determination (R2) was 0.97, which indicated the number of fruits counted by NDMFCS was near to the ground truth. These results demonstrate that the abatement of abnormal fruit detection can improve performance of apple counting, which has the potential to provide a technical support for estimating fruit yield in modern apple orchards.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛犊发布了新的文献求助10
3秒前
17秒前
爱静静应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
爱静静应助科研通管家采纳,获得10
20秒前
爱静静应助科研通管家采纳,获得10
20秒前
二三发布了新的文献求助10
22秒前
23秒前
23秒前
25秒前
zh完成签到,获得积分20
29秒前
糊涂涂发布了新的文献求助10
30秒前
xxbb发布了新的文献求助10
33秒前
38秒前
鹏程万里完成签到,获得积分10
39秒前
祥瑞发布了新的文献求助10
42秒前
贪玩的谷芹完成签到 ,获得积分10
44秒前
飘逸的平松完成签到 ,获得积分10
47秒前
51秒前
慕青应助二三采纳,获得10
54秒前
linggle发布了新的文献求助10
55秒前
58秒前
喝可乐的萝卜兔完成签到 ,获得积分10
58秒前
Hongbin发布了新的文献求助10
1分钟前
爆米花应助牛犊采纳,获得10
1分钟前
健忘的寻菱完成签到 ,获得积分10
1分钟前
1分钟前
二三发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CipherSage应助maher采纳,获得30
1分钟前
Captain发布了新的文献求助10
1分钟前
1分钟前
jfuU发布了新的文献求助10
1分钟前
祥瑞发布了新的文献求助10
1分钟前
追寻念云完成签到 ,获得积分10
1分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
1分钟前
Captain完成签到,获得积分10
1分钟前
QQQQY发布了新的文献求助30
1分钟前
行云流水完成签到,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126036
求助须知:如何正确求助?哪些是违规求助? 2776256
关于积分的说明 7729636
捐赠科研通 2431643
什么是DOI,文献DOI怎么找? 1292200
科研通“疑难数据库(出版商)”最低求助积分说明 622582
版权声明 600392