Capturing High-level Semantic Correlations via Graph for Multimodal Sentiment Analysis

计算机科学 情绪分析 图形 人工智能 自然语言处理 理论计算机科学
作者
Fan Qian,Jiqing Han,Yadong Guan,Wenjie Song,Yongjun He
出处
期刊:IEEE Signal Processing Letters [Institute of Electrical and Electronics Engineers]
卷期号:31: 561-565 被引量:3
标识
DOI:10.1109/lsp.2024.3359570
摘要

Modeling intra-modal and cross-modal interactions poses significant challenges in multimodal sentiment analysis. Currently, graph-based methods like HGraph-CL achieve promising performance, which rely on two different levels of graph contrastive learning within and between modalities to explore sentiment correlations. However, HGraph-CL still faces the following drawbacks in graph construction: 1) nodes of the graph are represented at the frame level, only containing low-level information, neglecting the correlations among high-level semantics; 2) edges of the graph are based on the fixed dependency relations between words in the text sequence and the adjacent relations between frame-level nodes in the non-verbal sequences, failing to effectively capture implicit and long-distance correlations. To this end, this letter introduces capsule networks to construct high-level semantic nodes in a graph, uncovering deep sentimental structures. Furthermore, the learnable adjacency matrices are employed to construct edges of graph, thus adaptively learning the relations between nodes. Experimental results on several benchmark datasets for multimodal sentiment analysis demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈越越越发布了新的文献求助10
1秒前
墨墨完成签到 ,获得积分10
2秒前
木子李发布了新的文献求助10
2秒前
盛yyyy完成签到,获得积分10
4秒前
aobacae发布了新的文献求助50
6秒前
Qianbaor应助我是苯宝宝采纳,获得30
6秒前
科研通AI5应助三木采纳,获得10
6秒前
血红蛋白关注了科研通微信公众号
9秒前
10秒前
11秒前
桐桐应助祭礼之龙采纳,获得10
11秒前
科研通AI5应助黑纸一张采纳,获得100
12秒前
12秒前
glanceofwind完成签到 ,获得积分10
13秒前
无心的秋珊完成签到 ,获得积分10
14秒前
sun完成签到,获得积分10
15秒前
NexusExplorer应助好吧不是采纳,获得10
15秒前
16秒前
Akim应助Hannah采纳,获得10
16秒前
17秒前
18秒前
三木发布了新的文献求助10
18秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
20秒前
20秒前
20秒前
21秒前
在水一方应助至秦采纳,获得10
21秒前
善学以致用应助NIHAO213采纳,获得10
22秒前
yang发布了新的文献求助10
22秒前
xiao晓发布了新的文献求助100
22秒前
jiayou完成签到,获得积分10
23秒前
Saraba发布了新的文献求助10
24秒前
清爽灰狼发布了新的文献求助10
24秒前
小蘑菇应助sun采纳,获得10
25秒前
26秒前
一一应助youy采纳,获得30
26秒前
小富婆完成签到 ,获得积分10
26秒前
28秒前
Bonjour完成签到,获得积分20
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944