One-Shot Multiple Object Tracking With Robust ID Preservation

计算机科学 能见度 人工智能 一致性(知识库) 判别式 计算机视觉 特征(语言学) 视频跟踪 特征学习 模棱两可 模式识别(心理学) 对象(语法) 语言学 哲学 物理 光学 程序设计语言
作者
Weiyi Lv,Ning Zhang,Junjie Zhang,Dan Zeng
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 4473-4488 被引量:5
标识
DOI:10.1109/tcsvt.2023.3339609
摘要

Maintaining identity consistency and avoiding ID-switch during tracking is one of the primary focuses of multiple object tracking (MOT). One-shot MOT methods which jointly learn the detection and tracking models in one single network (hence namely, one-shot) have achieved promising results in tracking accuracy and speed. However, their capabilities of maintaining ID consistency are somehow weakened. The reason for this weakened ID consistency is two-fold: (1) the ID features learned by one-shot methods are not discriminative enough due to their heatmap-based single-location representation. (2) severe occlusion in the MOT scene leads to feature ambiguity and high ID-switch. In this paper, we propose a one-shot MOT system with strong ID consistency called PID-MOT (Preserved ID MOT). Specifically, we devise a visibility branch to predict the object occlusion level, and a predicted visibility map will be used in both Feature Refinement Model (FRM) and a visibility-guided two-stage association strategy (VGTAS). FRM is designed to strengthen the location-based features and enrich the identity information. VGTAS is proposed for tackling objects with high and low visibility separately. In addition, we initialize the parameters of our model by training on the recently emerged abundant synthetic MOTSynth dataset from scratch rather than the commonly used COCO dataset for full training. Finally, we carry out our method on the commonly used MOT datasets and the experimental results demonstrate that the proposed PID-MOT achieves especially good performances in ID F1 score (IDF1) and ID-Switch (IDS) compared with other state-of-the-art one-shot trackers, with comparable overall HOTA/MOTA performance. The code is available at https://github.com/Kroery/PIDMOT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziwei完成签到,获得积分10
刚刚
SANG完成签到,获得积分10
2秒前
2秒前
2秒前
丘比特应助专一的谷南采纳,获得10
3秒前
科研通AI5应助于芋菊采纳,获得10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
钟离的狗发布了新的文献求助10
6秒前
三十七度小火炉完成签到 ,获得积分10
7秒前
研友_Lw4Ngn发布了新的文献求助10
8秒前
影子发布了新的文献求助10
9秒前
搜集达人应助mangmang采纳,获得10
11秒前
12秒前
所所应助研友_Lw4Ngn采纳,获得10
12秒前
13秒前
自由茈应助LastXUAN采纳,获得20
13秒前
14秒前
14秒前
Akim应助不安夜雪采纳,获得10
15秒前
2810527600完成签到,获得积分10
15秒前
韩hqf驳回了大个应助
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
科研通AI5应助雨雨雨雨采纳,获得10
18秒前
18秒前
小米发布了新的文献求助10
19秒前
真的找不到文献救救我完成签到,获得积分10
19秒前
Akim应助快乐的篮球采纳,获得10
20秒前
21秒前
21秒前
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
于芋菊发布了新的文献求助10
23秒前
23秒前
星辰大海应助2211采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3659929
求助须知:如何正确求助?哪些是违规求助? 3221325
关于积分的说明 9739851
捐赠科研通 2930724
什么是DOI,文献DOI怎么找? 1604598
邀请新用户注册赠送积分活动 757316
科研通“疑难数据库(出版商)”最低求助积分说明 734376