清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The application of artificial intelligence for Rapid On-Site Evaluation during flexible bronchoscopy

医学 肺癌 活检 卷积神经网络 支气管镜检查 腺癌 罗斯(数学) 癌症 放射科 人工智能 病理 计算机科学 内科学 几何学 数学
作者
Shuang Yan,Yongfei Li,Lei Pan,Hua Jiang,Li Gong,Faguang Jin
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14 被引量:1
标识
DOI:10.3389/fonc.2024.1360831
摘要

Background Rapid On-Site Evaluation (ROSE) during flexible bronchoscopy (FB) can improve the adequacy of biopsy specimens and diagnostic yield of lung cancer. However, the lack of cytopathologists has restricted the wide use of ROSE. Objective To develop a ROSE artificial intelligence (AI) system using deep learning techniques to differentiate malignant from benign lesions based on ROSE cytological images, and evaluate the clinical performance of the ROSE AI system. Method 6357 ROSE cytological images from 721 patients who underwent transbronchial biopsy were collected from January to July 2023 at the Tangdu Hospital, Air Force Medical University. A ROSE AI system, composed of a deep convolutional neural network (DCNN), was developed to identify whether there were malignant cells in the ROSE cytological images. Internal testing, external testing, and human-machine competition were used to evaluate the performance of the system. Results The ROSE AI system identified images containing lung malignant cells with the accuracy of 92.97% and 90.26% on the internal testing dataset and external testing dataset respectively, and its performance was comparable to that of the experienced cytopathologist. The ROSE AI system also showed promising performance in diagnosing lung cancer based on ROSE cytological images, with accuracy of 89.61% and 87.59%, and sensitivity of 90.57% and 94.90% on the internal testing dataset and external testing dataset respectively. More specifically, the agreement between the ROSE AI system and the experienced cytopathologist in diagnosing common types of lung cancer, including squamous cell carcinoma, adenocarcinoma, and small cell lung cancer, demonstrated almost perfect consistency in both the internal testing dataset (κ = 0.930 ) and the external testing dataset (κ = 0.932 ). Conclusions The ROSE AI system demonstrated feasibility and robustness in identifying specimen adequacy, showing potential enhancement in the diagnostic yield of FB. Nevertheless, additional enhancements, incorporating a more diverse range of training data and leveraging advanced AI models with increased capabilities, along with rigorous validation through extensive multi-center randomized control assays, are crucial to guarantee the seamless and effective integration of this technology into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕晓啸完成签到 ,获得积分0
6秒前
雪白的绯完成签到 ,获得积分10
24秒前
huiluowork完成签到 ,获得积分10
28秒前
回首不再是少年完成签到,获得积分0
44秒前
重重重飞完成签到 ,获得积分10
59秒前
ghan完成签到 ,获得积分10
59秒前
开放访天完成签到 ,获得积分10
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
游01完成签到 ,获得积分10
1分钟前
风秋杨完成签到 ,获得积分10
1分钟前
wanci应助jason采纳,获得10
2分钟前
有人应助摆渡人采纳,获得10
2分钟前
今后应助jason采纳,获得10
2分钟前
陈糯米完成签到,获得积分10
3分钟前
ljssll完成签到 ,获得积分10
3分钟前
王春琰完成签到 ,获得积分10
3分钟前
huanghe完成签到,获得积分10
3分钟前
执着易形完成签到 ,获得积分10
3分钟前
岩松完成签到 ,获得积分10
3分钟前
和谐的夏岚完成签到 ,获得积分10
3分钟前
摆渡人完成签到,获得积分10
3分钟前
dragonhmw完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
曾经不言完成签到 ,获得积分10
4分钟前
xiyin完成签到,获得积分10
4分钟前
井小浩完成签到 ,获得积分10
4分钟前
SwapExisting完成签到 ,获得积分10
5分钟前
123完成签到 ,获得积分10
5分钟前
xiyin发布了新的文献求助10
5分钟前
lielizabeth完成签到 ,获得积分0
5分钟前
魔幻的妖丽完成签到 ,获得积分10
6分钟前
靜心完成签到 ,获得积分10
6分钟前
FashionBoy应助田田采纳,获得10
6分钟前
终究是残念完成签到,获得积分10
6分钟前
naczx完成签到,获得积分10
6分钟前
6分钟前
田田发布了新的文献求助10
6分钟前
JJ完成签到 ,获得积分10
6分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793662
关于积分的说明 7807147
捐赠科研通 2449982
什么是DOI,文献DOI怎么找? 1303563
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350