The application of artificial intelligence for Rapid On-Site Evaluation during flexible bronchoscopy

医学 肺癌 活检 卷积神经网络 支气管镜检查 腺癌 罗斯(数学) 癌症 放射科 人工智能 病理 计算机科学 内科学 几何学 数学
作者
Shuang Yan,Yongfei Li,Lei Pan,Hua Jiang,Li Gong,Faguang Jin
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14 被引量:1
标识
DOI:10.3389/fonc.2024.1360831
摘要

Background Rapid On-Site Evaluation (ROSE) during flexible bronchoscopy (FB) can improve the adequacy of biopsy specimens and diagnostic yield of lung cancer. However, the lack of cytopathologists has restricted the wide use of ROSE. Objective To develop a ROSE artificial intelligence (AI) system using deep learning techniques to differentiate malignant from benign lesions based on ROSE cytological images, and evaluate the clinical performance of the ROSE AI system. Method 6357 ROSE cytological images from 721 patients who underwent transbronchial biopsy were collected from January to July 2023 at the Tangdu Hospital, Air Force Medical University. A ROSE AI system, composed of a deep convolutional neural network (DCNN), was developed to identify whether there were malignant cells in the ROSE cytological images. Internal testing, external testing, and human-machine competition were used to evaluate the performance of the system. Results The ROSE AI system identified images containing lung malignant cells with the accuracy of 92.97% and 90.26% on the internal testing dataset and external testing dataset respectively, and its performance was comparable to that of the experienced cytopathologist. The ROSE AI system also showed promising performance in diagnosing lung cancer based on ROSE cytological images, with accuracy of 89.61% and 87.59%, and sensitivity of 90.57% and 94.90% on the internal testing dataset and external testing dataset respectively. More specifically, the agreement between the ROSE AI system and the experienced cytopathologist in diagnosing common types of lung cancer, including squamous cell carcinoma, adenocarcinoma, and small cell lung cancer, demonstrated almost perfect consistency in both the internal testing dataset (κ = 0.930 ) and the external testing dataset (κ = 0.932 ). Conclusions The ROSE AI system demonstrated feasibility and robustness in identifying specimen adequacy, showing potential enhancement in the diagnostic yield of FB. Nevertheless, additional enhancements, incorporating a more diverse range of training data and leveraging advanced AI models with increased capabilities, along with rigorous validation through extensive multi-center randomized control assays, are crucial to guarantee the seamless and effective integration of this technology into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
从容晓凡发布了新的文献求助10
3秒前
鱼圆杂铺发布了新的文献求助10
5秒前
6秒前
翟如风发布了新的文献求助10
6秒前
7秒前
心平气和完成签到,获得积分10
7秒前
大力荷花完成签到,获得积分10
9秒前
9秒前
小白白完成签到 ,获得积分10
9秒前
12秒前
小崔完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
NexusExplorer应助缥缈的铅笔采纳,获得10
16秒前
16秒前
16秒前
从容晓凡完成签到,获得积分20
17秒前
越野发布了新的文献求助10
18秒前
Lucas应助快乐保温杯采纳,获得10
19秒前
echo发布了新的文献求助10
20秒前
鱼圆杂铺完成签到,获得积分0
20秒前
22秒前
25秒前
大耳朵图图完成签到,获得积分10
25秒前
Lucas应助神揽星辰入梦采纳,获得10
26秒前
27秒前
虾虾完成签到,获得积分10
27秒前
chloe完成签到,获得积分20
27秒前
酷炫的凤妖完成签到,获得积分10
27秒前
华仔应助狂奔的蜗牛采纳,获得10
27秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309