Cascade fusion of multi-modal and multi-source feature fusion by the attention for three-dimensional object detection

计算机科学 级联 融合 情态动词 特征(语言学) 人工智能 对象(语法) 模式识别(心理学) 目标检测 传感器融合 计算机视觉 哲学 化学 语言学 色谱法 高分子化学
作者
Fengning Yu,Jing Lian,Linhui Li,Jian Zhao
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108124-108124
标识
DOI:10.1016/j.engappai.2024.108124
摘要

Three dimensional (3D) object detection using the camera and light detection and ranging (LiDAR) fusion model has received much attention for meeting the environmental sensing requirement in autonomous vehicles. Due to the intrinsic data difference and the uneven distribution of LiDAR data, integrating the camera and LiDAR to solve the problem of the uneven spatial distribution of LiDAR data is still challenging. This paper proposes a novel 3D detector, which decorates the point cloud voxels with the semantic features at multi-scale and fuses the multi-source features by cross-attention to improve the detection performance. Specifically, the multi-modal fusion aims to maintain the cross-modal consistency by using the frustum model to construct the correspondence between point voxels and image pixels at multi-scale. To fully exploit the geometric constraints of voxels, we developed a adaptive sampling radius module to dynamically select the sampling radius of the voxel set abstraction module based on softmax. Moreover, we propose a multi-source fusion module which utilizes the cross-attention and takes the raw point cloud’s spatial distribution as the clue to fuse the features of point clouds, bird’s eye view information and the aggregated voxels to obtain the multi-scale and multi-source fusion features. Finally, region proposal network is adopted to generate and refine the 3D bbox and class prediction based on the fusion feature and bird’s eye view feature. Extensive experiments are conducted on the two publicly available 3D object datasets proposed by Karlsruhe Institute of technology and Toyota Technological Institute (KITTI) and the nuScenes. The proposed model reaches 86.27% mean Average Precision (mAP) for car on KITTI and obtains 6.56% gains than PointPainting. Moreover, our model reaches 70.70% mAP on nuScens and improves 2.61% than Transfusion. Furthermore, comprehensive ablation experiments are conducted to validate the effects and contribution of the different components of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦以亦发布了新的文献求助10
刚刚
zj完成签到,获得积分10
1秒前
完美世界应助炬火采纳,获得10
1秒前
KD发布了新的文献求助10
1秒前
张喻235532完成签到,获得积分10
1秒前
2秒前
2秒前
科研小美完成签到 ,获得积分10
2秒前
星空完成签到,获得积分10
2秒前
3秒前
Lin发布了新的文献求助10
3秒前
天天关注了科研通微信公众号
4秒前
CodeCraft应助幸福的凡灵采纳,获得10
5秒前
Tanxaio发布了新的文献求助10
5秒前
小西贝关注了科研通微信公众号
5秒前
赘婿应助厉飞羽采纳,获得10
5秒前
ANQ发布了新的文献求助10
6秒前
Elian发布了新的文献求助10
6秒前
6秒前
寒冷山柳应助郭博采纳,获得10
7秒前
朱古力完成签到,获得积分10
7秒前
铲铲大王完成签到 ,获得积分10
8秒前
小芳儿发布了新的文献求助10
8秒前
麻花辫女孩完成签到,获得积分10
8秒前
dai发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
12秒前
12秒前
13秒前
ANQ完成签到,获得积分20
14秒前
微笑不可发布了新的文献求助10
15秒前
有为发布了新的文献求助10
15秒前
15秒前
婷子乐发布了新的文献求助10
16秒前
指定能行发布了新的文献求助10
18秒前
日寸小同发布了新的文献求助10
18秒前
乐乐应助KD采纳,获得10
18秒前
善学以致用应助星空采纳,获得10
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919