Monitoring the efficacy of antibiotic therapy in febrile pediatric oncology patients with bacteremia using infrared spectroscopy of white blood cells-based machine learning

菌血症 医学 抗生素 重症监护医学 内科学 血培养 抗生素治疗 肿瘤科 微生物学 生物
作者
Yotam D. Eshel,Uraib Sharaha,Guy Beck,Gal Cohen-Logasi,Itshak Lapidot,Mahmoud Huleihel,S. Mordechaǐ,Joseph Kapelushnik,Ahmad Salman
出处
期刊:Talanta [Elsevier BV]
卷期号:270: 125619-125619
标识
DOI:10.1016/j.talanta.2023.125619
摘要

Bacteremia refers to the presence of bacteria in the bloodstream, which can lead to a serious and potentially life-threatening condition. In oncology patients, individuals undergoing cancer treatment have a higher risk of developing bacteremia due to a weakened immune system resulting from the disease itself or the treatments they receive. Prompt and accurate detection of bacterial infections and monitoring the effectiveness of antibiotic therapy are essential for enhancing patient outcomes and preventing the development and dissemination of multidrug-resistant bacteria. Traditional methods of infection monitoring, such as blood cultures and clinical observations, are time-consuming, labor-intensive, and often subject to limitations. This manuscript presents an innovative application of infrared spectroscopy of leucocytes of pediatric oncology patients with bacteremia combined with machine learning to diagnose the etiology of infection as bacterial and simultaneously monitor the efficacy of the antibiotic therapy in febrile pediatric oncology patients with bacteremia infections. Through the implementation of effective monitoring, it becomes possible to promptly identify any indications of treatment failure. This, in turn, indirectly serves to limit the progression of antibiotic resistance. The logistic regression (LR) classifier was able to differentiate the samples as bacterial or control within an hour, after receiving the blood samples with a success rate of over 95 %. Additionally, initial findings indicate that employing infrared spectroscopy of white blood cells (WBCs) along with machine learning is viable for monitoring the success of antibiotic therapy. Our follow up results demonstrate an accuracy of 87.5 % in assessing the effectiveness of the antibiotic treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助包容的千兰采纳,获得10
刚刚
虚拟的香芦完成签到,获得积分10
刚刚
鱼鱼鱼鱼鱼完成签到 ,获得积分10
刚刚
研友_VZG7GZ应助浅辰采纳,获得10
刚刚
执着幻然完成签到 ,获得积分10
1秒前
1秒前
Sophist发布了新的文献求助10
1秒前
畅快的新瑶完成签到,获得积分20
1秒前
jiangjiang发布了新的文献求助10
2秒前
机灵的友儿完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
Akim应助misalia采纳,获得10
3秒前
3秒前
wyf完成签到,获得积分10
3秒前
4秒前
无敌小邓历险记完成签到,获得积分10
4秒前
4秒前
4秒前
小白菜完成签到,获得积分10
5秒前
猫猫发布了新的文献求助10
5秒前
酷波er应助是漏漏呀采纳,获得10
5秒前
zxd1999完成签到,获得积分10
5秒前
芽芽豆发布了新的文献求助10
6秒前
6秒前
ZZJ发布了新的文献求助10
6秒前
6秒前
7秒前
陈东东发布了新的文献求助30
7秒前
不朽阳神完成签到,获得积分10
8秒前
8秒前
我爱科研完成签到 ,获得积分10
8秒前
起床做核酸完成签到,获得积分10
8秒前
小先完成签到,获得积分10
9秒前
搜集达人应助猫猫采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
chiahaokuo发布了新的文献求助10
10秒前
11秒前
11秒前
小白菜发布了新的文献求助100
11秒前
hj456完成签到,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792