A KMP-based interactive learning approach for robot trajectory adaptation with obstacle avoidance

计算机科学 避障 弹道 机器人 人工智能 机器人末端执行器 障碍物 避碰 适应(眼睛) 任务(项目管理) 笛卡尔坐标系 人机交互 计算机视觉 移动机器人 工程类 数学 碰撞 心理学 物理 几何学 计算机安全 系统工程 天文 神经科学 政治学 法学
作者
Sa Xiao,Xuyang Chen,Yuankai Lu,Jinhua Ye,Haibin Wu
出处
期刊:Industrial Robot-an International Journal [Emerald (MCB UP)]
卷期号:51 (2): 326-339
标识
DOI:10.1108/ir-11-2023-0284
摘要

Purpose Imitation learning is a powerful tool for planning the trajectory of robotic end-effectors in Cartesian space. Present methods can adapt the trajectory to the obstacle; however, the solutions may not always satisfy users, whereas it is hard for a nonexpert user to teach the robot to avoid obstacles in time as he/she wishes through demonstrations. This paper aims to address the above problem by proposing an approach that combines human supervision with the kernelized movement primitives (KMP) model. Design/methodology/approach This approach first extracts the reference database used to train KMP from demonstrations by using Gaussian mixture model and Gaussian mixture regression. Subsequently, KMP is used to modulate the trajectory of robotic end-effectors in real time based on feedback from its interaction with humans to avoid obstacles, which benefits from a novel reference database update strategy. The user can test different obstacle avoidance trajectories in the current task until a satisfactory solution is found. Findings Experiments performed with the KUKA cobot for obstacle avoidance show that this approach can adapt the trajectories of the robotic end-effector to the user’s wishes in real time, including trajectories that the robot has already passed and has not yet passed. Simulation comparisons also show that it exhibits better performance than KMP with the original reference database update strategy. Originality/value An interactive learning approach based on KMP is proposed and verified, which not only enables users to plan the trajectory of robotic end-effectors for obstacle avoidance more conveniently and efficiently but also provides an effective idea for accomplishing interactive learning tasks under constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIN完成签到,获得积分10
刚刚
Hello应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得20
1秒前
从容芮应助科研通管家采纳,获得30
1秒前
wanci应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
罗备发布了新的文献求助10
3秒前
6秒前
彭于晏应助Bearbiscuit采纳,获得10
6秒前
6秒前
笑点低怀薇完成签到,获得积分10
7秒前
清欢完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助闪闪凝冬采纳,获得10
8秒前
情怀应助清风采纳,获得10
10秒前
stuffmatter应助ZQYYRA采纳,获得10
10秒前
科研通AI2S应助liniubi采纳,获得10
11秒前
英姑应助111采纳,获得10
11秒前
sheiskaren发布了新的文献求助10
11秒前
12秒前
巫马尔槐发布了新的文献求助10
12秒前
14秒前
李爱国应助竹外桃花采纳,获得10
15秒前
15秒前
小蘑菇应助coffee采纳,获得10
15秒前
17秒前
笑解烦恼结完成签到,获得积分10
17秒前
热心访风发布了新的文献求助10
18秒前
干净溪流发布了新的文献求助10
18秒前
ZQYYRA完成签到,获得积分10
22秒前
心木完成签到 ,获得积分10
23秒前
23秒前
24秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139150
求助须知:如何正确求助?哪些是违规求助? 2790129
关于积分的说明 7793840
捐赠科研通 2446527
什么是DOI,文献DOI怎么找? 1301209
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109