CT‐based radiomics for the identification of colorectal cancer liver metastases sensitive to first‐line irinotecan‐based chemotherapy

伊立替康 医学 结直肠癌 化疗 无线电技术 内科学 放射科 肿瘤科 癌症
作者
Qi Wei,Jing Yang,Longbo Zheng,Yun Lu,Ruiqing Liu,Yiheng Ju,Tianye Niu,Dongsheng Wang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 2705-2714 被引量:2
标识
DOI:10.1002/mp.16325
摘要

Chemosensitivity prediction in colorectal cancer patients with liver metastases has remained a research hotspot. Radiomics can extract features from patient imaging, and deep learning or machine learning can be used to build models to predict patient outcomes prior to chemotherapy.In this study, the radiomics features and clinical data of colorectal cancer patients with liver metastases were used to predict their sensitivity to irinotecan-based chemotherapy.A total of 116 patients with unresectable colorectal cancer liver metastases who received first-line irinotecan-based chemotherapy from January 2015 to January 2020 in our institution were retrospectively collected. Overall, 116 liver metastases were randomly divided into training (n = 81) and validation (n = 35) cohorts in a 7:3 ratio. The effect of chemotherapy was determined based on Response Evaluation Criteria in Solid Tumors. The lesions were divided into response and nonresponse groups. Regions of interest (ROIs) were manually segmented, and sample sizes of 1×1×1, 3×3×3, 5×5×5 mm3 were used to extract radiomics features. The relevant features were identified through Pearson correlation analysis and the MRMR algorithm, and the clinical data were merged into the artificial neural network. Finally, the p-model was obtained after repeated learning and testing.The p-model could distinguish responders in the training (area under the curve [AUC] 0.754, 95% CI 0.650-0.858) and validation cohorts (AUC 0.752 95% CI 0.581-0.904). AUC values of the pure image group model are 0.720 (95% CI 0.609-0.827) and 0.684 (95% CI 0.529-0.890) for the training and validation cohorts respectively. As for the clinical data model, AUC values of the training and validation cohorts are 0.638 (95% CI 0.500-0.757) and 0.545 (95% CI 0.360-0.785), respectively. The performances of the latter two are less than that of the former.The p-model has the potential to discriminate colorectal cancer patients sensitive to chemotherapy. This model holds promise as a noninvasive tool to predict the response of colorectal liver metastases to chemotherapy, allowing for personalized treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
淡淡远锋完成签到,获得积分20
1秒前
xvzhenyuan发布了新的文献求助10
1秒前
1秒前
深情安青应助zwtaihua1025采纳,获得10
2秒前
今夜无人入眠完成签到,获得积分10
2秒前
蹦蹦发布了新的文献求助10
4秒前
小凯发布了新的文献求助10
4秒前
lalalala发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
wyd发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
森鹿发布了新的文献求助30
9秒前
我是老大应助谦让的含海采纳,获得10
10秒前
11秒前
zzz发布了新的文献求助10
11秒前
junze完成签到,获得积分10
12秒前
JamesPei应助Markming采纳,获得10
12秒前
12秒前
wyd完成签到,获得积分20
12秒前
14秒前
喜之郎完成签到,获得积分10
14秒前
皮皮发布了新的文献求助10
15秒前
淡淡远锋发布了新的文献求助10
15秒前
酷波er应助小凯采纳,获得10
15秒前
zx发布了新的文献求助10
15秒前
Narsic发布了新的文献求助10
15秒前
OKC发布了新的文献求助10
16秒前
16秒前
17秒前
嘻嘻尼88发布了新的文献求助10
17秒前
神勇煎蛋发布了新的文献求助10
18秒前
19秒前
Ning_发布了新的文献求助10
20秒前
花花521完成签到,获得积分10
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555334
求助须知:如何正确求助?哪些是违规求助? 3130933
关于积分的说明 9389211
捐赠科研通 2830448
什么是DOI,文献DOI怎么找? 1555992
邀请新用户注册赠送积分活动 726371
科研通“疑难数据库(出版商)”最低求助积分说明 715737