头孢噻肟
达尼奥
斑马鱼
生物
微生物学
微生物群
肠道菌群
抗生素耐药性
动物
抗生素
遗传学
基因
免疫学
作者
Xue Xue,Xiangju Li,Jialin Liu,Long Zhu,Li Zhou,Jia Jia,Zaizhao Wang
标识
DOI:10.1016/j.aquatox.2023.106459
摘要
With large amounts of cephalosporin end up in natural ecosystems, water has been acknowledged as the large reservoir of β-lactam resistance over the past decades. However, there is still insufficient knowledge available on the function of the living organisms to the transmission of antibiotic resistance. For this reason, in this study, using adult zebrafish (Danio rerio) as animal model, exposing them to environmentally relevant dose of cefotaxime for 150 days, we asked whether cefotaxime contamination accelerated β-lactam resistance in gut microbiota as well as its potential transmission. Results showed that some of β-lactam resistance genes (βRGs) were intrinsic embedded in intestinal microbiome of zebrafish even without antibiotic stressor. Across cefotaxime treatment, the abundance of most βRGs in fish gut microbiome decreased apparently in the short term firstly, and then increased with the prolonged exposure, forming distinctly divergent βRG profiles with antibiotic-untreated zebrafish. Meanwhile, with the rising concentration of cefotaxime, the range of βRGs’ host-taxa expanded and the co-occurrence relationships of mobile genetics elements (MGEs) with βRGs intensified, indicating the enhancement of βRGs’ mobility in gut microbiome when the fish suffered from cefotaxime contamination. Furthermore, the path of partial least squares path modeling (PLS-PM) gave an integral assessment on the specific causality of cefotaxime treatment to βRG profiles, showing that cefotaxime-mediated βRGs variation was most ascribed to the alteration of MGEs under cefotaxime stress, followed by bacterial community, functioning both direct influence as βRG-hosts and indirect effects via affecting MGEs. Finally, pathogenic bacteria Aeromonas was identified as the critical host for multiple βRGs in fish guts, and its β-lactam resistance increased over the duration time of cefotaxime exposure, suggesting the potential spreading risks for the antibiotic-resistant pathogens from environmental ecosystems to clinic. Overall, our finding emphasized cefotaxime contamination in aquatic surroundings could enhance the β-lactam resistance and its transmission mobility in fish bodies.
科研通智能强力驱动
Strongly Powered by AbleSci AI