Robust and Ultra‐Efficient Anti‐/De‐Icing Surface Engineered Through Photo‐/Electrothermal Micro‐Nanostructures With Switchable Solid‐Liquid States

结冰 材料科学 接触角 纳米技术 纳米结构 光热治疗 表面能 润湿 纳米- 复合材料 气象学 物理
作者
Qiuyue Liu,Yunpeng Wang,Xue-Ai Liu,Yizhen Li,Enze Yu,Zhiyong Sun,Liang Wang,Gui‐Lin Zhuang,Jie Yu,Shanqiu Liu
出处
期刊:Advanced Materials [Wiley]
被引量:1
标识
DOI:10.1002/adma.202410941
摘要

Photothermal superhydrophobic surfaces present a promising energy-saving solution for anti-/de-icing, offering effective icing delay and photothermal de-icing capabilities. However, a significant challenge in their practical application is the mechanical interlocking of micro-nanostructures with ice formed from condensed water vapor, leading to meltwater retention and compromised functionality post-de-icing. Here, a robust photo-/electrothermal icephobic surface with dynamic phase-transition micro-nanostructures are demonstrated through laser microfabrication and surface engineering. The engineered surface exhibits ultra-efficient, long-term stable anti-/de-icing performance and excellent superhydrophobicity, demonstrating an icing delay of ≈ 1250 s, photothermal de-icing in 8 s, water contact angle of 165°, and sliding angle of 0.2°. Furthermore, the surface maintains efficient anti-/de-icing ability and water repellency after 400 linear abrasion cycles under 0.93 MPa. Remarkably, under simulated natural icing conditions, where water vapor freezes within the micro-nanostructures causing mechanical interlocking, the surface remains entirely non-wetted after photo-/electrothermal de-icing, maintaining superhydrophobicity and effectiveness for continued anti-/de-icing. This exceptional performance is attributed to the designed phase-transition micro-nanostructures that liquefy during de-icing, significantly reducing interactions with water molecules, as quantitatively validated by molecular dynamics simulations. This work provides new perspectives and methodologies for designing and creating innovative, high-performance anti-/de-icing surfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Su完成签到,获得积分20
2秒前
4秒前
Su发布了新的文献求助10
5秒前
6秒前
6秒前
科研通AI2S应助老西瓜采纳,获得10
7秒前
yao发布了新的文献求助10
8秒前
木子应助MXG采纳,获得40
8秒前
bc举报热乎乎的小空气求助涉嫌违规
8秒前
钰钰完成签到 ,获得积分10
10秒前
lulu发布了新的文献求助20
11秒前
11秒前
充电宝应助123采纳,获得10
12秒前
奇异物质发布了新的文献求助10
12秒前
14秒前
skier发布了新的文献求助10
14秒前
妮妮完成签到,获得积分10
15秒前
彭于晏应助luchang123qq采纳,获得10
16秒前
科研通AI5应助油柑美式采纳,获得10
16秒前
18秒前
爆米花应助hoo采纳,获得10
18秒前
小刚完成签到,获得积分10
19秒前
19秒前
汉堡包应助肥肠的枣糕啊采纳,获得10
19秒前
heung完成签到,获得积分10
19秒前
贾舒涵发布了新的文献求助10
20秒前
糯米糍发布了新的文献求助10
21秒前
21秒前
狐狸狗狗应助gong采纳,获得10
22秒前
lulu完成签到,获得积分20
22秒前
22秒前
123发布了新的文献求助10
23秒前
多多完成签到,获得积分10
25秒前
26秒前
26秒前
27秒前
huangyi完成签到,获得积分10
27秒前
Vigour完成签到 ,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673662
求助须知:如何正确求助?哪些是违规求助? 3229164
关于积分的说明 9784494
捐赠科研通 2939740
什么是DOI,文献DOI怎么找? 1611281
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736326