亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large-Scale Network Imputation and Prediction of Traffic Volume Based on Multi-Source Data Collection System

计算机科学 数据挖掘 插补(统计学) 缺少数据 数据收集 实时计算 机器学习 统计 数学
作者
Donghyun Kwon,Changhee Lee,Heechan Kang,Lee-Hyung Kim
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (9): 30-42 被引量:3
标识
DOI:10.1177/03611981231158324
摘要

Although newly developed traffic detectors were actively deployed to improve the accuracy and coverage of collecting city-wise traffic state information, the rapid transition of the traffic management system caused the problems of massive data corruption. For the practical application of recovering the missing values, the deep learning-based imputation technique is used, which relies on prediction performance with the consideration of dynamic spatial and temporal characteristics in the traffic state information. However, the existing method requires an assumption that the given data comprise a complete dataset from a single source based on the experiments evaluated on a small scale or long stream of freeways. In this paper, we propose a multi-variable spatio-temporal learning technique based on multi-source traffic state information, which was realized by adopting Attention-based Spatial–Temporal Graph Convolutional Networks (ASTGCN). The proposed imputation method cooperatively aggregates spatial and temporal correlation from two different types of detectors into an integrated framework, which allows us to predict missing volume regardless of the missing rate. Moreover, the study was conducted on a large-scale network that contains the entire road characteristics. Daejeon city has served as a case study to demonstrate the performance, and the results show that the mean absolute error of the proposed method is under 12 vehicles/5 min. Our work indicates that multi-source traffic state information can be utilized to impute city-wide missing traffic volume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
44秒前
1分钟前
highestant完成签到,获得积分20
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
壹拾叁叁发布了新的文献求助10
1分钟前
我是老大应助壹拾叁叁采纳,获得10
1分钟前
1分钟前
1分钟前
徐徐徐发布了新的文献求助10
1分钟前
徐徐徐完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
淡漠发布了新的文献求助10
2分钟前
Hello应助Atalent采纳,获得10
2分钟前
2分钟前
归尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Atalent完成签到,获得积分10
2分钟前
花椒的喵酱完成签到,获得积分10
2分钟前
Atalent发布了新的文献求助10
2分钟前
2分钟前
3分钟前
壮观的抽屉完成签到,获得积分10
3分钟前
3分钟前
淡漠发布了新的文献求助10
3分钟前
3分钟前
淡漠完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
nicolaslcq完成签到,获得积分10
4分钟前
梦梦发布了新的文献求助30
4分钟前
慕青应助淡淡碧玉采纳,获得10
4分钟前
枫叶猫扑发布了新的文献求助10
4分钟前
枫叶猫扑完成签到,获得积分20
5分钟前
herococa完成签到,获得积分10
5分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742368
求助须知:如何正确求助?哪些是违规求助? 3284904
关于积分的说明 10042104
捐赠科研通 3001593
什么是DOI,文献DOI怎么找? 1647398
邀请新用户注册赠送积分活动 784198
科研通“疑难数据库(出版商)”最低求助积分说明 750666