Nonparametric and Continuous Variable-Based Stratigraphic Modelling from Sparse Boreholes using Signed Distance Function and Bayesian Compressive Sensing

钻孔 非参数统计 贝叶斯概率 压缩传感 地质学 岩土工程 功能(生物学) 变量(数学) 抗压强度 数据挖掘 计算机科学 数学 算法 统计 数学分析 材料科学 生物 进化生物学 复合材料
作者
Ze-Hang Qian,Chao Shi,Yu Wang,Zi-Jun Cao
出处
期刊:Canadian Geotechnical Journal [NRC Research Press]
被引量:3
标识
DOI:10.1139/cgj-2024-0295
摘要

An accurate stochastic interpretation of subsurface stratigraphy with quantified uncertainty can benefit the subsequent risk management of geotechnical infrastructure. Traditional approaches to developing geological cross-sections from sparse boreholes typically require the calibration or definition of empirical model parameters and functions, which may introduce subjectivity and bias. In this study, a non-parametric and continuous variable-based spatial predictor that leverages the signed distance function and Bayesian compressive sensing (BCS) is proposed for subsurface stratigraphic modelling. The proposed method transforms sparse categorical borehole data from a low-dimensional space into continuous variables in a high-dimensional space, enabling a comprehensive representation of more implicit characteristics of intricate geological patterns. This transformation facilitates the use of the continuous-variable-based BCS for non-parametric spatial prediction. The most probable geological cross-section and uncertainty qualification plot are derived after transforming spatially interpreted fields of continuous variables back into soil types. The performance of the proposed method is demonstrated using synthetic and real-world cases. Results indicate that the proposed approach can handle intricate stratigraphic scenarios characterized by complex geological structures, such as crossed-inclined, folded, inclined-folded, and interbedded strata, in a data-driven and non-parametric manner. The advantages of the proposed method over existing spatial predictors for developing geological cross-sections are also demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
走走发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
葉落葉飄完成签到,获得积分10
2秒前
动听元彤完成签到,获得积分10
2秒前
默默的聪健完成签到,获得积分10
3秒前
3秒前
3秒前
ZZH发布了新的文献求助10
3秒前
4秒前
yelaikuhun74发布了新的文献求助10
4秒前
GDY完成签到,获得积分10
4秒前
5秒前
何休槊发布了新的文献求助20
5秒前
5秒前
Cactus应助cat_head采纳,获得10
5秒前
HonamC完成签到,获得积分10
6秒前
Windycityguy完成签到,获得积分10
6秒前
科研通AI5应助bluesiryao采纳,获得10
6秒前
我爱紫丁香完成签到,获得积分10
7秒前
JJ完成签到,获得积分10
7秒前
Hoooo...发布了新的文献求助10
8秒前
asd发布了新的文献求助10
8秒前
8秒前
有足量NaCl发布了新的文献求助10
8秒前
研友_VZG7GZ应助eternity136采纳,获得10
9秒前
9秒前
pomelost发布了新的文献求助10
9秒前
煎饼果子完成签到,获得积分10
10秒前
mj完成签到,获得积分10
10秒前
11秒前
MHX完成签到,获得积分10
12秒前
13秒前
Doubleyang1完成签到,获得积分20
14秒前
i2z关注了科研通微信公众号
14秒前
14秒前
研友_VZG7GZ应助碧蓝的觅露采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403