SD-YOLO: A lightweight steel surface defect detection model with dynamic parameterisation for adaptive feature modulation

特征(语言学) 调制(音乐) 曲面(拓扑) 计算机科学 结构工程 工程类 物理 声学 数学 几何学 语言学 哲学
作者
Xianguo Li,Changyu Xu,J. Li,Yang Li,Xinyi Zhou
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241293880
摘要

The production and manufacturing processes of steel inevitably generate various types of surface defects. The real-time and accurate detection of these surface defects is of great practical significance. To realise real-time detection of steel surface defects with significant differences in shape and size on resource constrained edge computing equipment, this paper proposes a lightweight real-time steel surface defect detection model SD-YOLO based on a dynamic parameterisation strategy. Firstly, a Dynamic Parameterised Enhancement Module is proposed, which dynamically assigns routing weights to parallel convolutional kernels based on input features, thereby enhancing the representation of defect features in the feature map and improving the network's ability to capture rich and detailed features. Secondly, the Efficient Intersection over Union loss function is employed to optimise the regression process of the prediction boxes. This enhances the model's fitting performance on bounding boxes with significant aspect ratio differences and improves the accuracy of detecting defects of various scales. Experimental results indicate that for the NEU-DET and GC10-DET datasets, SD-YOLO achieves a mean average precision of 83.1% and 74.1% respectively, with a stronger focus on defective regions, and detection speeds of 169.5 Frames Per Second (FPS) and 178.6 FPS, respectively. When SD-YOLO is deployed on the NVIDIA Jetson Orin NANO, the detection speed reaches 33.9 FPS and 66.7 FPS respectively, and maintains the same detection accuracy as the server-side, which realises real-time, accurate, and automatic detection of steel surface defects on edge computing devices with limited computational resources. Furthermore, SD-YOLO also demonstrates excellent generalisation ability and accuracy on images of steel surface defects collected in real industrial environments. In conclusion, SD-YOLO provides a practical and effective solution for real-time steel surface defect detection in resource-constrained environments, making it highly suitable for deployment in industrial applications. Source code is available at https://github.com/Xcy0512/SD-YOLO .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raymond应助风中莫英采纳,获得10
刚刚
1111发布了新的文献求助10
刚刚
七七完成签到 ,获得积分10
刚刚
京墨襦完成签到 ,获得积分10
1秒前
johnson2012完成签到,获得积分10
1秒前
公茂源完成签到 ,获得积分10
1秒前
1秒前
超级访云完成签到,获得积分10
1秒前
背后白梦发布了新的文献求助20
2秒前
wuran发布了新的文献求助10
2秒前
Jupiter 1234发布了新的文献求助10
3秒前
脑洞疼应助Laurie采纳,获得10
3秒前
嗒嗒完成签到,获得积分10
3秒前
3秒前
Firenze完成签到,获得积分20
3秒前
lql发布了新的文献求助10
4秒前
慕青应助Zhou采纳,获得10
4秒前
ZZ0901完成签到,获得积分10
4秒前
Star发布了新的文献求助10
4秒前
tangzanwayne完成签到 ,获得积分10
5秒前
5秒前
贪玩的甜瓜完成签到,获得积分10
6秒前
yzizz发布了新的文献求助10
6秒前
6秒前
迷人圣诞树很闲完成签到,获得积分10
7秒前
神勇书芹完成签到,获得积分10
7秒前
balabala发布了新的文献求助10
7秒前
zsd完成签到,获得积分20
7秒前
黑米粥发布了新的文献求助200
7秒前
微生物小白学习ing完成签到,获得积分20
8秒前
低调小狗完成签到,获得积分10
8秒前
8秒前
烟花应助cici采纳,获得10
9秒前
9秒前
9秒前
lune发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285