SD-YOLO: A lightweight steel surface defect detection model with dynamic parameterisation for adaptive feature modulation

特征(语言学) 调制(音乐) 曲面(拓扑) 计算机科学 结构工程 工程类 物理 声学 数学 几何学 语言学 哲学
作者
Xianguo Li,Changyu Xu,Jing Wang,Jing Wang,Xinyi Zhou
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241293880
摘要

The production and manufacturing processes of steel inevitably generate various types of surface defects. The real-time and accurate detection of these surface defects is of great practical significance. To realise real-time detection of steel surface defects with significant differences in shape and size on resource constrained edge computing equipment, this paper proposes a lightweight real-time steel surface defect detection model SD-YOLO based on a dynamic parameterisation strategy. Firstly, a Dynamic Parameterised Enhancement Module is proposed, which dynamically assigns routing weights to parallel convolutional kernels based on input features, thereby enhancing the representation of defect features in the feature map and improving the network's ability to capture rich and detailed features. Secondly, the Efficient Intersection over Union loss function is employed to optimise the regression process of the prediction boxes. This enhances the model's fitting performance on bounding boxes with significant aspect ratio differences and improves the accuracy of detecting defects of various scales. Experimental results indicate that for the NEU-DET and GC10-DET datasets, SD-YOLO achieves a mean average precision of 83.1% and 74.1% respectively, with a stronger focus on defective regions, and detection speeds of 169.5 Frames Per Second (FPS) and 178.6 FPS, respectively. When SD-YOLO is deployed on the NVIDIA Jetson Orin NANO, the detection speed reaches 33.9 FPS and 66.7 FPS respectively, and maintains the same detection accuracy as the server-side, which realises real-time, accurate, and automatic detection of steel surface defects on edge computing devices with limited computational resources. Furthermore, SD-YOLO also demonstrates excellent generalisation ability and accuracy on images of steel surface defects collected in real industrial environments. In conclusion, SD-YOLO provides a practical and effective solution for real-time steel surface defect detection in resource-constrained environments, making it highly suitable for deployment in industrial applications. Source code is available at https://github.com/Xcy0512/SD-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FJM完成签到,获得积分10
1秒前
fire完成签到,获得积分10
1秒前
打打应助一一采纳,获得10
2秒前
zzz发布了新的文献求助10
3秒前
3秒前
林思完成签到,获得积分10
4秒前
4秒前
4秒前
冷艳的孤晴完成签到,获得积分10
4秒前
wipmzxu完成签到,获得积分10
5秒前
CL完成签到,获得积分10
5秒前
5秒前
5秒前
FashionBoy应助DraGon采纳,获得10
5秒前
ueue发布了新的文献求助10
5秒前
kyf完成签到,获得积分10
5秒前
5秒前
6秒前
小七上山完成签到,获得积分10
6秒前
mrwill完成签到,获得积分10
8秒前
8秒前
bao完成签到,获得积分10
8秒前
柚子发布了新的文献求助10
8秒前
魔幻哈密瓜应助qqq采纳,获得20
8秒前
行走江湖的破忒头完成签到,获得积分10
8秒前
9秒前
maonaiqian发布了新的文献求助10
9秒前
10秒前
小酒迟疑完成签到,获得积分10
10秒前
10秒前
雅琪发布了新的文献求助10
10秒前
10秒前
领导范儿应助Des采纳,获得10
10秒前
泡泡发布了新的文献求助10
10秒前
科研通AI2S应助里涵采纳,获得10
10秒前
鳗鱼香魔发布了新的文献求助10
11秒前
风宝宝发布了新的文献求助10
11秒前
山阴路没有夏天完成签到,获得积分20
11秒前
勤劳钧发布了新的文献求助30
12秒前
甜蜜发带完成签到 ,获得积分10
12秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123170
求助须知:如何正确求助?哪些是违规求助? 2773659
关于积分的说明 7718928
捐赠科研通 2429325
什么是DOI,文献DOI怎么找? 1290230
科研通“疑难数据库(出版商)”最低求助积分说明 621795
版权声明 600251