SD-YOLO: A lightweight steel surface defect detection model with dynamic parameterisation for adaptive feature modulation

特征(语言学) 调制(音乐) 曲面(拓扑) 计算机科学 结构工程 工程类 物理 声学 数学 几何学 语言学 哲学
作者
Xianguo Li,Changyu Xu,J. Li,Yang Li,Xinyi Zhou
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241293880
摘要

The production and manufacturing processes of steel inevitably generate various types of surface defects. The real-time and accurate detection of these surface defects is of great practical significance. To realise real-time detection of steel surface defects with significant differences in shape and size on resource constrained edge computing equipment, this paper proposes a lightweight real-time steel surface defect detection model SD-YOLO based on a dynamic parameterisation strategy. Firstly, a Dynamic Parameterised Enhancement Module is proposed, which dynamically assigns routing weights to parallel convolutional kernels based on input features, thereby enhancing the representation of defect features in the feature map and improving the network's ability to capture rich and detailed features. Secondly, the Efficient Intersection over Union loss function is employed to optimise the regression process of the prediction boxes. This enhances the model's fitting performance on bounding boxes with significant aspect ratio differences and improves the accuracy of detecting defects of various scales. Experimental results indicate that for the NEU-DET and GC10-DET datasets, SD-YOLO achieves a mean average precision of 83.1% and 74.1% respectively, with a stronger focus on defective regions, and detection speeds of 169.5 Frames Per Second (FPS) and 178.6 FPS, respectively. When SD-YOLO is deployed on the NVIDIA Jetson Orin NANO, the detection speed reaches 33.9 FPS and 66.7 FPS respectively, and maintains the same detection accuracy as the server-side, which realises real-time, accurate, and automatic detection of steel surface defects on edge computing devices with limited computational resources. Furthermore, SD-YOLO also demonstrates excellent generalisation ability and accuracy on images of steel surface defects collected in real industrial environments. In conclusion, SD-YOLO provides a practical and effective solution for real-time steel surface defect detection in resource-constrained environments, making it highly suitable for deployment in industrial applications. Source code is available at https://github.com/Xcy0512/SD-YOLO .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张流筝完成签到 ,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
年轻花卷完成签到 ,获得积分10
1秒前
Sun发布了新的文献求助10
2秒前
2秒前
2秒前
2010发布了新的文献求助10
2秒前
小张要发论文完成签到,获得积分10
2秒前
内向尔安完成签到,获得积分10
2秒前
linhua发布了新的文献求助10
2秒前
现代水卉完成签到,获得积分10
2秒前
俭朴老五发布了新的文献求助10
2秒前
周轩完成签到,获得积分10
3秒前
搜集达人应助君无邪采纳,获得10
3秒前
caoll发布了新的文献求助10
3秒前
NexusExplorer应助高子懿采纳,获得10
3秒前
qaplay完成签到 ,获得积分0
3秒前
4秒前
好好应助尹二采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
Hayworth完成签到,获得积分10
5秒前
顺心夜阑发布了新的文献求助10
5秒前
刘123完成签到 ,获得积分10
5秒前
6秒前
Lucas应助wow采纳,获得10
6秒前
xiao完成签到,获得积分10
6秒前
欢喜蛋挞发布了新的文献求助10
7秒前
王鹏发布了新的文献求助10
7秒前
yangchao1289发布了新的文献求助10
7秒前
打打应助Sun采纳,获得10
7秒前
Colo完成签到,获得积分10
7秒前
小马甲应助LILILILILI采纳,获得10
7秒前
8秒前
8秒前
Owen应助zhl2210536采纳,获得10
8秒前
沉静缘分完成签到,获得积分10
10秒前
宋丽娟完成签到,获得积分10
10秒前
Orange应助姜姜采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515