SD-YOLO: A lightweight steel surface defect detection model with dynamic parameterisation for adaptive feature modulation

特征(语言学) 调制(音乐) 曲面(拓扑) 计算机科学 结构工程 工程类 物理 声学 数学 几何学 语言学 哲学
作者
Xianguo Li,Changyu Xu,J. Li,Yang Li,Xinyi Zhou
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241293880
摘要

The production and manufacturing processes of steel inevitably generate various types of surface defects. The real-time and accurate detection of these surface defects is of great practical significance. To realise real-time detection of steel surface defects with significant differences in shape and size on resource constrained edge computing equipment, this paper proposes a lightweight real-time steel surface defect detection model SD-YOLO based on a dynamic parameterisation strategy. Firstly, a Dynamic Parameterised Enhancement Module is proposed, which dynamically assigns routing weights to parallel convolutional kernels based on input features, thereby enhancing the representation of defect features in the feature map and improving the network's ability to capture rich and detailed features. Secondly, the Efficient Intersection over Union loss function is employed to optimise the regression process of the prediction boxes. This enhances the model's fitting performance on bounding boxes with significant aspect ratio differences and improves the accuracy of detecting defects of various scales. Experimental results indicate that for the NEU-DET and GC10-DET datasets, SD-YOLO achieves a mean average precision of 83.1% and 74.1% respectively, with a stronger focus on defective regions, and detection speeds of 169.5 Frames Per Second (FPS) and 178.6 FPS, respectively. When SD-YOLO is deployed on the NVIDIA Jetson Orin NANO, the detection speed reaches 33.9 FPS and 66.7 FPS respectively, and maintains the same detection accuracy as the server-side, which realises real-time, accurate, and automatic detection of steel surface defects on edge computing devices with limited computational resources. Furthermore, SD-YOLO also demonstrates excellent generalisation ability and accuracy on images of steel surface defects collected in real industrial environments. In conclusion, SD-YOLO provides a practical and effective solution for real-time steel surface defect detection in resource-constrained environments, making it highly suitable for deployment in industrial applications. Source code is available at https://github.com/Xcy0512/SD-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hwen1998完成签到 ,获得积分10
刚刚
善学以致用应助南北采纳,获得10
刚刚
刚刚
zyf关注了科研通微信公众号
刚刚
莫道桑榆完成签到,获得积分10
1秒前
1秒前
wishes完成签到 ,获得积分10
1秒前
充电宝应助研友_7ZeNx8采纳,获得10
1秒前
顾矜应助hush采纳,获得10
2秒前
2秒前
2秒前
千俞完成签到 ,获得积分10
3秒前
曹影发布了新的文献求助10
4秒前
卞233完成签到,获得积分10
4秒前
dingding完成签到 ,获得积分10
4秒前
5秒前
liangshulai发布了新的文献求助10
5秒前
舒适的白开水完成签到,获得积分10
5秒前
tty发布了新的文献求助10
5秒前
ainsoph完成签到,获得积分10
5秒前
5秒前
6秒前
蜀安应助氮源采纳,获得30
7秒前
LBQ完成签到,获得积分10
7秒前
hush完成签到,获得积分10
8秒前
所所应助尾巴抓不住我采纳,获得10
8秒前
8秒前
毛小驴完成签到,获得积分10
9秒前
10秒前
Richard发布了新的文献求助10
11秒前
李爱国应助顺心的尔安采纳,获得10
11秒前
LHLDP发布了新的文献求助20
12秒前
当当完成签到 ,获得积分10
12秒前
曹影完成签到,获得积分10
12秒前
12秒前
浮游应助科研通管家采纳,获得20
12秒前
浮游应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249