SD-YOLO: A lightweight steel surface defect detection model with dynamic parameterisation for adaptive feature modulation

特征(语言学) 调制(音乐) 曲面(拓扑) 计算机科学 结构工程 工程类 物理 声学 数学 几何学 哲学 语言学
作者
Xianguo Li,Changyu Xu,J. Li,Yang Li,Xinyi Zhou
出处
期刊:Ironmaking & Steelmaking [Taylor & Francis]
标识
DOI:10.1177/03019233241293880
摘要

The production and manufacturing processes of steel inevitably generate various types of surface defects. The real-time and accurate detection of these surface defects is of great practical significance. To realise real-time detection of steel surface defects with significant differences in shape and size on resource constrained edge computing equipment, this paper proposes a lightweight real-time steel surface defect detection model SD-YOLO based on a dynamic parameterisation strategy. Firstly, a Dynamic Parameterised Enhancement Module is proposed, which dynamically assigns routing weights to parallel convolutional kernels based on input features, thereby enhancing the representation of defect features in the feature map and improving the network's ability to capture rich and detailed features. Secondly, the Efficient Intersection over Union loss function is employed to optimise the regression process of the prediction boxes. This enhances the model's fitting performance on bounding boxes with significant aspect ratio differences and improves the accuracy of detecting defects of various scales. Experimental results indicate that for the NEU-DET and GC10-DET datasets, SD-YOLO achieves a mean average precision of 83.1% and 74.1% respectively, with a stronger focus on defective regions, and detection speeds of 169.5 Frames Per Second (FPS) and 178.6 FPS, respectively. When SD-YOLO is deployed on the NVIDIA Jetson Orin NANO, the detection speed reaches 33.9 FPS and 66.7 FPS respectively, and maintains the same detection accuracy as the server-side, which realises real-time, accurate, and automatic detection of steel surface defects on edge computing devices with limited computational resources. Furthermore, SD-YOLO also demonstrates excellent generalisation ability and accuracy on images of steel surface defects collected in real industrial environments. In conclusion, SD-YOLO provides a practical and effective solution for real-time steel surface defect detection in resource-constrained environments, making it highly suitable for deployment in industrial applications. Source code is available at https://github.com/Xcy0512/SD-YOLO .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrLiu完成签到,获得积分10
1秒前
繁荣的夏岚完成签到 ,获得积分10
2秒前
chenxing1947发布了新的文献求助10
2秒前
4秒前
Chroninus完成签到,获得积分10
5秒前
虚拟的水之完成签到 ,获得积分10
5秒前
七七丫完成签到,获得积分10
5秒前
6秒前
和尘同光完成签到,获得积分10
6秒前
DandanHan0916发布了新的文献求助150
7秒前
8秒前
兴奋采梦发布了新的文献求助10
8秒前
蘅皋发布了新的文献求助10
9秒前
勇敢且鲁班完成签到,获得积分10
10秒前
CodeCraft应助温柔的海安采纳,获得10
11秒前
舟遥遥发布了新的文献求助10
12秒前
13秒前
充电宝应助guard采纳,获得10
14秒前
科研通AI2S应助wos采纳,获得10
14秒前
都会完成签到 ,获得积分10
15秒前
如梦如画完成签到 ,获得积分10
15秒前
Lucas应助知性的觅露采纳,获得10
15秒前
Dritsw应助小野采纳,获得10
15秒前
15秒前
16秒前
挪威的森林完成签到,获得积分10
17秒前
外向孤容发布了新的文献求助10
17秒前
宋江他大表哥完成签到,获得积分10
17秒前
17秒前
18秒前
赘婿应助andy采纳,获得10
19秒前
健脊护柱完成签到 ,获得积分10
19秒前
保持好心情完成签到 ,获得积分10
20秒前
20秒前
21秒前
JF123_完成签到 ,获得积分10
21秒前
wu完成签到,获得积分10
22秒前
璐璐完成签到,获得积分10
22秒前
小方发布了新的文献求助10
22秒前
轻松盼望发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278