SD-YOLO: A lightweight steel surface defect detection model with dynamic parameterisation for adaptive feature modulation

特征(语言学) 调制(音乐) 曲面(拓扑) 计算机科学 结构工程 工程类 物理 声学 数学 几何学 语言学 哲学
作者
Xianguo Li,Changyu Xu,J. Li,Yang Li,Xinyi Zhou
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241293880
摘要

The production and manufacturing processes of steel inevitably generate various types of surface defects. The real-time and accurate detection of these surface defects is of great practical significance. To realise real-time detection of steel surface defects with significant differences in shape and size on resource constrained edge computing equipment, this paper proposes a lightweight real-time steel surface defect detection model SD-YOLO based on a dynamic parameterisation strategy. Firstly, a Dynamic Parameterised Enhancement Module is proposed, which dynamically assigns routing weights to parallel convolutional kernels based on input features, thereby enhancing the representation of defect features in the feature map and improving the network's ability to capture rich and detailed features. Secondly, the Efficient Intersection over Union loss function is employed to optimise the regression process of the prediction boxes. This enhances the model's fitting performance on bounding boxes with significant aspect ratio differences and improves the accuracy of detecting defects of various scales. Experimental results indicate that for the NEU-DET and GC10-DET datasets, SD-YOLO achieves a mean average precision of 83.1% and 74.1% respectively, with a stronger focus on defective regions, and detection speeds of 169.5 Frames Per Second (FPS) and 178.6 FPS, respectively. When SD-YOLO is deployed on the NVIDIA Jetson Orin NANO, the detection speed reaches 33.9 FPS and 66.7 FPS respectively, and maintains the same detection accuracy as the server-side, which realises real-time, accurate, and automatic detection of steel surface defects on edge computing devices with limited computational resources. Furthermore, SD-YOLO also demonstrates excellent generalisation ability and accuracy on images of steel surface defects collected in real industrial environments. In conclusion, SD-YOLO provides a practical and effective solution for real-time steel surface defect detection in resource-constrained environments, making it highly suitable for deployment in industrial applications. Source code is available at https://github.com/Xcy0512/SD-YOLO .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
领导范儿应助wkkky采纳,获得10
3秒前
脑洞疼应助xwhl采纳,获得10
4秒前
杨咩咩发布了新的文献求助10
4秒前
5秒前
5秒前
爱吃粑粑发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
王权富贵发布了新的文献求助10
6秒前
xieyuan发布了新的文献求助10
6秒前
Lucas应助FlaKe采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
在下风爵完成签到,获得积分10
8秒前
纯真从寒发布了新的文献求助10
9秒前
mengtingmei完成签到,获得积分10
9秒前
9秒前
共享精神应助tingting采纳,获得10
9秒前
10秒前
蓝天应助坤舆探骊者采纳,获得10
10秒前
fengjingjing发布了新的文献求助10
10秒前
10秒前
lei完成签到,获得积分10
11秒前
Miya完成签到,获得积分10
11秒前
路宇鹏完成签到,获得积分10
15秒前
15秒前
YY完成签到,获得积分10
15秒前
wanci应助fengjingjing采纳,获得10
16秒前
FlaKe完成签到,获得积分10
16秒前
豆子完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
xinxin完成签到,获得积分10
17秒前
小T儿完成签到,获得积分10
17秒前
17秒前
大模型应助爱吃粑粑采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002