Kuramoto模型
统计物理学
热力学极限
相变
极限(数学)
理论(学习稳定性)
固定点
人口
物理
临界点(数学)
数学
同步(交流)
数学分析
量子力学
拓扑(电路)
计算机科学
组合数学
人口学
机器学习
社会学
作者
Ayushi Suman,Sarika Jalan
出处
期刊:Chaos
[American Institute of Physics]
日期:2024-10-01
卷期号:34 (10)
摘要
Finite-size systems of a Kuramoto model display intricate dynamics, especially in the presence of multi-stability where both coherent and incoherent states coexist. We investigate such a scenario in globally coupled populations of Kuramoto phase oscillators with higher-order interactions and observe that fluctuations inherent to finite-size systems drive the transition to the synchronized state before the critical point in the thermodynamic limit. Using numerical methods, we plot the first exit-time distribution of the magnitude of a complex order parameter and obtain numerical transition probabilities across various system sizes. Furthermore, we extend this study to a two-population oscillator system, and, using the velocity field of the associated order parameters, show the emergence of a new fixed point corresponding to a partially synchronized state arising due to the finite-size effect, which is absent in the thermodynamics limit.
科研通智能强力驱动
Strongly Powered by AbleSci AI