A Novel Approach to Accelerate CO2 Mineralization Storage through CO2 Nanobubbles

矿化(土壤科学) 计算机科学 环境科学 土壤科学 土壤水分
作者
Zhiqiang Mao,Yueliang Liu,Zhenhua Rui,Zesen Peng,Dan Zhao,Yiyang Tang,Hongzhi Jiang
标识
DOI:10.2118/221157-ms
摘要

Abstract Carbon capture and storage (CCS) technology is a crucial means to address global climate change and reduce atmospheric CO2. CO2 mineralization storage can store CO2 in underground rock formations in a long-term and safe manner, which is the most stable storage method. However, this process may take several decades or even longer, severely constraining the application of CO2 mineralization storage in mining fields. In this work, we propose an innovative approach utilizing CO2 nanobubbles to achieve efficient CO2 mineralization. Chlorite was selected as the experimental sample to compare the effects of carbonated water and CO2 nanobubbles on CO2 storage. Analytical instruments were employed to analyze the rock surface morphology, mineral composition, and ion concentration in the reaction solution post-experiment, revealing the mechanism by which CO2 nanobubbles accelerate the CO2 mineralization rate. Results reveal that CO2 nanobubbles have an average size of 167.6 nm, a Zeta potential of −18.98 mV, and a concentration of 9.4×107 particles/mL. The solution's pH is lower than that of carbonated water, suggesting that the CO2 nanobubble solution enhances the supersaturation level of CO2 in the solution, which facilitates the dissolution of rock minerals. After the reaction of chlorite minerals with CO2, the concentrations of Mg2+, Fe2+, and Al3+ ions initially increased and then decreased, while the concentration of Si4+ ions increased and then stabilized. The ion content in the solution followed the order of Mg2+ > Fe2+ > Si4+ > Al3+. Dissolution processes dominate within the first 1 to 6 days, after which the precipitation rate surpasses the dissolution rate. The surface of chlorite exhibits corrosion features and a new element peak of carbon (C), indicating the formation of inorganic carbonate minerals after the reaction. Thermogravimetric analysis shows that the thermal decomposition of chlorite occurs in two stages: primarily MgCO3 decomposes between 350°C and 650°C, while FeCO3 decomposes between 700°C and 850°C, with a higher content of MgCO3 compared to FeCO3. Compared to carbonated water, the CO2 mineralization rate increased by 17.07% when the reaction solution contained CO2 nanobubbles. This approach can shorten the time required for CO2 mineralization storage, facilitating large-scale CO2 storage. Furthermore, the mechanism of CO2-water-rock interaction is also deeply revealed, which is of great value for understanding the underground CO2 storage process and optimizing the conditions for storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哪吒之魔童闹海完成签到,获得积分10
刚刚
刚刚
地表飞猪应助巫马沛春采纳,获得30
刚刚
郭优优发布了新的文献求助10
刚刚
乐乐应助景行行止采纳,获得10
1秒前
1秒前
1秒前
Lancent完成签到,获得积分10
1秒前
啦熊发布了新的文献求助10
2秒前
2秒前
今天喝咖啡吗完成签到,获得积分10
2秒前
GR发布了新的文献求助10
3秒前
小叮当完成签到,获得积分10
4秒前
Stella完成签到,获得积分10
4秒前
4秒前
养虎人完成签到,获得积分20
5秒前
留胡子的火完成签到,获得积分10
5秒前
杨一发布了新的文献求助10
5秒前
自觉的老九完成签到,获得积分20
5秒前
SYLH应助yciDo采纳,获得10
6秒前
Hollow发布了新的文献求助30
6秒前
咚咚糖发布了新的文献求助10
7秒前
7秒前
kassy发布了新的文献求助10
7秒前
Lmyznl完成签到 ,获得积分10
7秒前
Silence发布了新的文献求助10
7秒前
8秒前
大熊猫寄生虫完成签到,获得积分10
8秒前
善学以致用应助范啦啦啦采纳,获得10
8秒前
高先春发布了新的文献求助10
8秒前
木月子完成签到,获得积分10
9秒前
科研通AI2S应助zm采纳,获得10
9秒前
9秒前
李健的小迷弟应助MHX采纳,获得10
10秒前
小鹿完成签到,获得积分10
11秒前
11秒前
gujian发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970843
求助须知:如何正确求助?哪些是违规求助? 3515550
关于积分的说明 11178897
捐赠科研通 3250660
什么是DOI,文献DOI怎么找? 1795393
邀请新用户注册赠送积分活动 875828
科研通“疑难数据库(出版商)”最低求助积分说明 805188