A Novel Approach to Accelerate CO2 Mineralization Storage through CO2 Nanobubbles

矿化(土壤科学) 计算机科学 环境科学 土壤科学 土壤水分
作者
Zhiqiang Mao,Yueliang Liu,Zhenhua Rui,Zesen Peng,Dan Zhao,Yiyang Tang,Hongzhi Jiang
标识
DOI:10.2118/221157-ms
摘要

Abstract Carbon capture and storage (CCS) technology is a crucial means to address global climate change and reduce atmospheric CO2. CO2 mineralization storage can store CO2 in underground rock formations in a long-term and safe manner, which is the most stable storage method. However, this process may take several decades or even longer, severely constraining the application of CO2 mineralization storage in mining fields. In this work, we propose an innovative approach utilizing CO2 nanobubbles to achieve efficient CO2 mineralization. Chlorite was selected as the experimental sample to compare the effects of carbonated water and CO2 nanobubbles on CO2 storage. Analytical instruments were employed to analyze the rock surface morphology, mineral composition, and ion concentration in the reaction solution post-experiment, revealing the mechanism by which CO2 nanobubbles accelerate the CO2 mineralization rate. Results reveal that CO2 nanobubbles have an average size of 167.6 nm, a Zeta potential of −18.98 mV, and a concentration of 9.4×107 particles/mL. The solution's pH is lower than that of carbonated water, suggesting that the CO2 nanobubble solution enhances the supersaturation level of CO2 in the solution, which facilitates the dissolution of rock minerals. After the reaction of chlorite minerals with CO2, the concentrations of Mg2+, Fe2+, and Al3+ ions initially increased and then decreased, while the concentration of Si4+ ions increased and then stabilized. The ion content in the solution followed the order of Mg2+ > Fe2+ > Si4+ > Al3+. Dissolution processes dominate within the first 1 to 6 days, after which the precipitation rate surpasses the dissolution rate. The surface of chlorite exhibits corrosion features and a new element peak of carbon (C), indicating the formation of inorganic carbonate minerals after the reaction. Thermogravimetric analysis shows that the thermal decomposition of chlorite occurs in two stages: primarily MgCO3 decomposes between 350°C and 650°C, while FeCO3 decomposes between 700°C and 850°C, with a higher content of MgCO3 compared to FeCO3. Compared to carbonated water, the CO2 mineralization rate increased by 17.07% when the reaction solution contained CO2 nanobubbles. This approach can shorten the time required for CO2 mineralization storage, facilitating large-scale CO2 storage. Furthermore, the mechanism of CO2-water-rock interaction is also deeply revealed, which is of great value for understanding the underground CO2 storage process and optimizing the conditions for storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赖雅绿完成签到,获得积分10
1秒前
辞树完成签到,获得积分10
1秒前
ugly_20201208完成签到,获得积分10
1秒前
大意的凝云完成签到,获得积分10
2秒前
HH完成签到,获得积分10
3秒前
4秒前
6秒前
珈蓝完成签到,获得积分10
6秒前
嘟嘟请让一让完成签到,获得积分10
7秒前
莫x莫完成签到 ,获得积分10
8秒前
bubble完成签到,获得积分10
9秒前
9秒前
万能图书馆应助sl采纳,获得10
9秒前
河丫应助sl采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
科研人发布了新的文献求助10
10秒前
10秒前
魏莱关注了科研通微信公众号
11秒前
dd发布了新的文献求助10
12秒前
yifan92完成签到,获得积分10
13秒前
14秒前
灵巧的孤容完成签到,获得积分10
15秒前
袁翰将军发布了新的文献求助10
15秒前
a雪橙完成签到 ,获得积分10
17秒前
超帅的碱完成签到,获得积分10
17秒前
18秒前
陈大海完成签到,获得积分20
18秒前
LaTeXer给积极行天的求助进行了留言
18秒前
白斯特完成签到,获得积分10
19秒前
科研混子完成签到,获得积分10
19秒前
听雨完成签到 ,获得积分10
19秒前
jianglili完成签到 ,获得积分10
19秒前
思源应助王云骢采纳,获得10
20秒前
等待的航空完成签到 ,获得积分10
21秒前
顾矜应助乔安采纳,获得10
21秒前
雪ノ下詩乃完成签到,获得积分10
22秒前
神外之城发布了新的文献求助80
22秒前
科研人完成签到,获得积分10
24秒前
莫友安完成签到 ,获得积分10
24秒前
大个应助迅速曼冬采纳,获得10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048