A Novel Approach to Accelerate CO2 Mineralization Storage through CO2 Nanobubbles

矿化(土壤科学) 计算机科学 环境科学 土壤科学 土壤水分
作者
Zhiqiang Mao,Yueliang Liu,Zhenhua Rui,Zesen Peng,Dan Zhao,Yiyang Tang,Hongzhi Jiang
标识
DOI:10.2118/221157-ms
摘要

Abstract Carbon capture and storage (CCS) technology is a crucial means to address global climate change and reduce atmospheric CO2. CO2 mineralization storage can store CO2 in underground rock formations in a long-term and safe manner, which is the most stable storage method. However, this process may take several decades or even longer, severely constraining the application of CO2 mineralization storage in mining fields. In this work, we propose an innovative approach utilizing CO2 nanobubbles to achieve efficient CO2 mineralization. Chlorite was selected as the experimental sample to compare the effects of carbonated water and CO2 nanobubbles on CO2 storage. Analytical instruments were employed to analyze the rock surface morphology, mineral composition, and ion concentration in the reaction solution post-experiment, revealing the mechanism by which CO2 nanobubbles accelerate the CO2 mineralization rate. Results reveal that CO2 nanobubbles have an average size of 167.6 nm, a Zeta potential of −18.98 mV, and a concentration of 9.4×107 particles/mL. The solution's pH is lower than that of carbonated water, suggesting that the CO2 nanobubble solution enhances the supersaturation level of CO2 in the solution, which facilitates the dissolution of rock minerals. After the reaction of chlorite minerals with CO2, the concentrations of Mg2+, Fe2+, and Al3+ ions initially increased and then decreased, while the concentration of Si4+ ions increased and then stabilized. The ion content in the solution followed the order of Mg2+ > Fe2+ > Si4+ > Al3+. Dissolution processes dominate within the first 1 to 6 days, after which the precipitation rate surpasses the dissolution rate. The surface of chlorite exhibits corrosion features and a new element peak of carbon (C), indicating the formation of inorganic carbonate minerals after the reaction. Thermogravimetric analysis shows that the thermal decomposition of chlorite occurs in two stages: primarily MgCO3 decomposes between 350°C and 650°C, while FeCO3 decomposes between 700°C and 850°C, with a higher content of MgCO3 compared to FeCO3. Compared to carbonated water, the CO2 mineralization rate increased by 17.07% when the reaction solution contained CO2 nanobubbles. This approach can shorten the time required for CO2 mineralization storage, facilitating large-scale CO2 storage. Furthermore, the mechanism of CO2-water-rock interaction is also deeply revealed, which is of great value for understanding the underground CO2 storage process and optimizing the conditions for storage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡姬花发布了新的文献求助10
刚刚
刚刚
刚刚
蓦然发布了新的文献求助10
1秒前
1秒前
852应助喜悦的皮卡丘采纳,获得10
1秒前
1秒前
鸭爪爪发布了新的文献求助10
2秒前
3秒前
3秒前
Ankie发布了新的文献求助10
3秒前
Akira发布了新的文献求助10
3秒前
4秒前
lili完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
勤劳的斑马完成签到,获得积分10
7秒前
7秒前
完美世界应助Windycityguy采纳,获得10
7秒前
深情安青应助starlx0813采纳,获得10
8秒前
8秒前
义气丹雪应助细腻听白采纳,获得100
8秒前
Re发布了新的文献求助10
8秒前
科研通AI6.1应助热情千风采纳,获得10
9秒前
雨柏完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
13秒前
orixero应助年轻就要气盛采纳,获得10
14秒前
violet完成签到,获得积分20
15秒前
充电宝应助健忘的雨安采纳,获得10
17秒前
dfggg发布了新的文献求助10
17秒前
饱满的问丝完成签到,获得积分10
18秒前
19秒前
大水完成签到 ,获得积分10
20秒前
20秒前
Akira完成签到,获得积分20
21秒前
隐形曼青应助是ok耶采纳,获得10
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848