A Novel Approach to Accelerate CO2 Mineralization Storage through CO2 Nanobubbles

矿化(土壤科学) 计算机科学 环境科学 土壤科学 土壤水分
作者
Zhiqiang Mao,Yueliang Liu,Zhenhua Rui,Zesen Peng,Dan Zhao,Yiyang Tang,Hongzhi Jiang
标识
DOI:10.2118/221157-ms
摘要

Abstract Carbon capture and storage (CCS) technology is a crucial means to address global climate change and reduce atmospheric CO2. CO2 mineralization storage can store CO2 in underground rock formations in a long-term and safe manner, which is the most stable storage method. However, this process may take several decades or even longer, severely constraining the application of CO2 mineralization storage in mining fields. In this work, we propose an innovative approach utilizing CO2 nanobubbles to achieve efficient CO2 mineralization. Chlorite was selected as the experimental sample to compare the effects of carbonated water and CO2 nanobubbles on CO2 storage. Analytical instruments were employed to analyze the rock surface morphology, mineral composition, and ion concentration in the reaction solution post-experiment, revealing the mechanism by which CO2 nanobubbles accelerate the CO2 mineralization rate. Results reveal that CO2 nanobubbles have an average size of 167.6 nm, a Zeta potential of −18.98 mV, and a concentration of 9.4×107 particles/mL. The solution's pH is lower than that of carbonated water, suggesting that the CO2 nanobubble solution enhances the supersaturation level of CO2 in the solution, which facilitates the dissolution of rock minerals. After the reaction of chlorite minerals with CO2, the concentrations of Mg2+, Fe2+, and Al3+ ions initially increased and then decreased, while the concentration of Si4+ ions increased and then stabilized. The ion content in the solution followed the order of Mg2+ > Fe2+ > Si4+ > Al3+. Dissolution processes dominate within the first 1 to 6 days, after which the precipitation rate surpasses the dissolution rate. The surface of chlorite exhibits corrosion features and a new element peak of carbon (C), indicating the formation of inorganic carbonate minerals after the reaction. Thermogravimetric analysis shows that the thermal decomposition of chlorite occurs in two stages: primarily MgCO3 decomposes between 350°C and 650°C, while FeCO3 decomposes between 700°C and 850°C, with a higher content of MgCO3 compared to FeCO3. Compared to carbonated water, the CO2 mineralization rate increased by 17.07% when the reaction solution contained CO2 nanobubbles. This approach can shorten the time required for CO2 mineralization storage, facilitating large-scale CO2 storage. Furthermore, the mechanism of CO2-water-rock interaction is also deeply revealed, which is of great value for understanding the underground CO2 storage process and optimizing the conditions for storage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴的海豚完成签到,获得积分10
1秒前
麦田里的守望者完成签到,获得积分10
4秒前
萧一发布了新的文献求助10
4秒前
5秒前
6秒前
乐乐应助周周不喝粥采纳,获得10
7秒前
我是老大应助12345采纳,获得10
8秒前
英姑应助萧一采纳,获得10
10秒前
ww发布了新的文献求助10
10秒前
howard发布了新的文献求助10
12秒前
14秒前
wuxunxun2015发布了新的文献求助10
15秒前
17秒前
微信研友发布了新的文献求助10
19秒前
yznfly完成签到,获得积分0
19秒前
bkagyin应助宋鹏浩采纳,获得30
20秒前
Zhou完成签到,获得积分10
20秒前
342396102发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
丘比特应助萱棚采纳,获得10
22秒前
123发布了新的文献求助10
22秒前
微信研友完成签到,获得积分10
28秒前
小马甲应助危机的语琴采纳,获得10
29秒前
29秒前
30秒前
fafa完成签到,获得积分10
32秒前
32秒前
Jackson完成签到 ,获得积分10
34秒前
12345发布了新的文献求助10
34秒前
ljq完成签到,获得积分10
35秒前
夏熠完成签到,获得积分10
35秒前
37秒前
罗Eason发布了新的文献求助10
38秒前
aw完成签到,获得积分10
39秒前
Jeannie完成签到,获得积分10
41秒前
43秒前
我爱陶子完成签到 ,获得积分10
43秒前
星辰大海应助一个西藏采纳,获得10
44秒前
46秒前
咩咩羊完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604076
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856886
捐赠科研通 4696312
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507302
关于科研通互助平台的介绍 1471851