Discrimination between benign and malignant gallbladder lesions on enhanced CT imaging using radiomics

医学 无线电技术 列线图 放射科 恶性肿瘤 胆囊癌 胆囊 病理 肿瘤科 内科学
作者
Ying-ying Zhuang,Yun Feng,Dan Kong,Lili Guo
出处
期刊:Acta Radiologica [SAGE Publishing]
卷期号:65 (5): 422-431
标识
DOI:10.1177/02841851241242042
摘要

Background Gallbladder cancer is a rare but aggressive malignancy that is often diagnosed at an advanced stage and is associated with poor outcomes. Purpose To develop a radiomics model to discriminate between benign and malignant gallbladder lesions using enhanced computed tomography (CT) imaging. Material and Methods All patients had a preoperative contrast-enhanced CT scan, which was independently analyzed by two radiologists. Regions of interest were manually delineated on portal venous phase images, and radiomics features were extracted. Feature selection was performed using mRMR and LASSO methods. The patients were randomly divided into training and test groups at a ratio of 7:3. Clinical and radiomics parameters were identified in the training group, three models were constructed, and the models’ prediction accuracy and ability were evaluated using AUC and calibration curves. Results In the training group, the AUCs of the clinical model and radiomics model were 0.914 and 0.968, and that of the nomogram model was 0.980, respectively. There were statistically significant differences in diagnostic accuracy between nomograms and radiomics features ( P <0.05). There was no significant difference in diagnostic accuracy between the nomograms and clinical features ( P >0.05) or between the clinical features and radiomics features ( P >0.05). In the testing group, the AUC of the clinical model and radiomics model were 0.904 and 0.941, and that of the nomogram model was 0.948, respectively. There was no significant difference in diagnostic accuracy between the three groups ( P >0.05). Conclusion It was suggested that radiomics analysis using enhanced CT imaging can effectively discriminate between benign and malignant gallbladder lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CL完成签到,获得积分10
刚刚
俭朴的听寒完成签到,获得积分10
1秒前
佰态发布了新的文献求助10
1秒前
2秒前
酷波er应助博修采纳,获得10
2秒前
3秒前
3秒前
科研专家发布了新的文献求助10
4秒前
洁净的代容完成签到,获得积分10
4秒前
奋斗的伟宸完成签到,获得积分10
5秒前
张杰完成签到,获得积分10
6秒前
6秒前
正直千兰发布了新的文献求助10
7秒前
Lisa发布了新的文献求助10
8秒前
9秒前
大力云朵发布了新的文献求助20
9秒前
李爱国应助CXS采纳,获得10
10秒前
张杰发布了新的文献求助10
10秒前
DrLee完成签到,获得积分10
11秒前
14秒前
17秒前
17秒前
来了完成签到,获得积分10
19秒前
粱忆寒发布了新的文献求助10
21秒前
22秒前
麻雀发布了新的文献求助30
22秒前
22秒前
大脑袋应助感动的念双采纳,获得30
24秒前
www完成签到 ,获得积分10
26秒前
隐形从梦完成签到 ,获得积分20
27秒前
CodeCraft应助Jero采纳,获得10
27秒前
28秒前
Zzzzzzz完成签到,获得积分10
28秒前
博修发布了新的文献求助10
29秒前
kingking完成签到,获得积分10
29秒前
31秒前
十二完成签到 ,获得积分10
32秒前
33秒前
QYF发布了新的文献求助10
33秒前
上官若男应助123采纳,获得10
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382