Discrimination between benign and malignant gallbladder lesions on enhanced CT imaging using radiomics

医学 无线电技术 列线图 放射科 恶性肿瘤 胆囊癌 胆囊 病理 肿瘤科 内科学
作者
Ying-ying Zhuang,Yun Feng,Dan Kong,Lili Guo
出处
期刊:Acta Radiologica [SAGE]
卷期号:65 (5): 422-431
标识
DOI:10.1177/02841851241242042
摘要

Background Gallbladder cancer is a rare but aggressive malignancy that is often diagnosed at an advanced stage and is associated with poor outcomes. Purpose To develop a radiomics model to discriminate between benign and malignant gallbladder lesions using enhanced computed tomography (CT) imaging. Material and Methods All patients had a preoperative contrast-enhanced CT scan, which was independently analyzed by two radiologists. Regions of interest were manually delineated on portal venous phase images, and radiomics features were extracted. Feature selection was performed using mRMR and LASSO methods. The patients were randomly divided into training and test groups at a ratio of 7:3. Clinical and radiomics parameters were identified in the training group, three models were constructed, and the models’ prediction accuracy and ability were evaluated using AUC and calibration curves. Results In the training group, the AUCs of the clinical model and radiomics model were 0.914 and 0.968, and that of the nomogram model was 0.980, respectively. There were statistically significant differences in diagnostic accuracy between nomograms and radiomics features ( P <0.05). There was no significant difference in diagnostic accuracy between the nomograms and clinical features ( P >0.05) or between the clinical features and radiomics features ( P >0.05). In the testing group, the AUC of the clinical model and radiomics model were 0.904 and 0.941, and that of the nomogram model was 0.948, respectively. There was no significant difference in diagnostic accuracy between the three groups ( P >0.05). Conclusion It was suggested that radiomics analysis using enhanced CT imaging can effectively discriminate between benign and malignant gallbladder lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奶咖兔兔发布了新的文献求助10
1秒前
希望天下0贩的0应助qwq采纳,获得10
1秒前
1秒前
2秒前
彭于晏应助干净青亦采纳,获得10
2秒前
贾丽君发布了新的文献求助10
3秒前
调研昵称发布了新的文献求助10
4秒前
求顺利毕业完成签到,获得积分10
4秒前
4秒前
5秒前
unqiue发布了新的文献求助10
6秒前
NexusExplorer应助踔厉采纳,获得10
7秒前
lf发布了新的文献求助10
9秒前
moon发布了新的文献求助10
9秒前
9秒前
大个应助David采纳,获得10
10秒前
liao应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
嘉心糖应助科研通管家采纳,获得20
10秒前
Orange应助科研通管家采纳,获得30
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
11秒前
南巷完成签到,获得积分10
11秒前
一水独流发布了新的文献求助10
12秒前
unqiue完成签到,获得积分0
13秒前
万能图书馆应助卜卜脆采纳,获得10
13秒前
树袋熊完成签到,获得积分10
13秒前
学术野猪发布了新的文献求助10
14秒前
17秒前
Echo1128完成签到 ,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313770
求助须知:如何正确求助?哪些是违规求助? 2946123
关于积分的说明 8528435
捐赠科研通 2621703
什么是DOI,文献DOI怎么找? 1434019
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650679