AK-Gibbs: An active learning Kriging model based on Gibbs importance sampling algorithm for small failure probabilities

吉布斯抽样 克里金 采样(信号处理) 算法 大都会-黑斯廷斯算法 计算机科学 数学 应用数学 机器学习 人工智能 蒙特卡罗方法 统计 马尔科夫蒙特卡洛 贝叶斯概率 计算机视觉 滤波器(信号处理)
作者
Wei Zhang,Ziyi Zhao,Huanwei Xu,Xiaoyu Li,Zhonglai Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:426: 116992-116992 被引量:10
标识
DOI:10.1016/j.cma.2024.116992
摘要

In engineering practices, it is a time-consuming procedure to estimate the small failure probability of highly nonlinear and dimensional limit state functions and Kriging-based methods are more effective representatives. However, it is an important challenge to construct the candidate importance sample pool for Kriging-based small failure probability analysis methods with multiple input random variables when the Metropolis-Hastings (M-H) algorithm with acceptance-rejection sampling principle is employed. To address the challenge and estimate the reliability of structures in a more efficient and accurate way, an active learning Kriging model based on the Gibbs importance sampling algorithm (AK-Gibbs) is proposed, especially for the small failure probabilities with nonlinear and high-dimensional limit state functions. A new active learning function that can be directly linked to the global error is first constructed. Weighting coefficients of the joint probability density function in the new active learning function are then determined to select the most probable points (MPPs) and update samples efficiently and accurately. The Gibbs importance sampling algorithm is derived based on the Gibbs algorithm to effectively establish the candidate importance sample pool. An improved global error-based stopping criterion is finally constructed to avoid pre-mature or late-mature for the estimation of small failure probabilities with complicated failure domains. Two numerical and four engineering examples are respectively employed to elaborate and validate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助LLL采纳,获得10
刚刚
三三完成签到,获得积分10
1秒前
科研通AI6应助研友_aLjxNZ采纳,获得10
3秒前
优雅大树发布了新的文献求助10
3秒前
Lawfy发布了新的文献求助10
4秒前
5秒前
feifei完成签到,获得积分10
8秒前
8秒前
英俊的铭应助祈求夏天采纳,获得10
8秒前
小蘑菇应助美满惜寒采纳,获得10
8秒前
xiaoli完成签到 ,获得积分10
9秒前
爆米花应助LLL采纳,获得10
9秒前
9秒前
Jaxine完成签到 ,获得积分10
10秒前
科研通AI6应助lxy采纳,获得10
11秒前
子车茗应助橘子味的猫采纳,获得30
12秒前
迷路藏鸟完成签到,获得积分10
12秒前
Mr.Wei发布了新的文献求助10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
santory完成签到,获得积分10
13秒前
简时完成签到 ,获得积分10
13秒前
14秒前
14秒前
LLL完成签到,获得积分10
15秒前
18秒前
布鸽子发布了新的文献求助10
18秒前
风清扬发布了新的文献求助10
19秒前
狗子完成签到 ,获得积分10
19秒前
20秒前
耿耿发布了新的文献求助10
20秒前
23秒前
25秒前
27秒前
Owen应助孤独的德地采纳,获得10
27秒前
27秒前
搜集达人应助乐正怡采纳,获得10
28秒前
111发布了新的文献求助10
29秒前
郦涔完成签到,获得积分10
29秒前
张瑾伃完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554292
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654380
捐赠科研通 4580589
什么是DOI,文献DOI怎么找? 2512383
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076