AK-Gibbs: An active learning Kriging model based on Gibbs importance sampling algorithm for small failure probabilities

吉布斯抽样 克里金 采样(信号处理) 算法 大都会-黑斯廷斯算法 计算机科学 数学 应用数学 机器学习 人工智能 蒙特卡罗方法 统计 马尔科夫蒙特卡洛 贝叶斯概率 滤波器(信号处理) 计算机视觉
作者
Wei Zhang,Zhao Ziyi,Huanwei Xu,Xiaoyu Li,Zhonglai Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:426: 116992-116992 被引量:1
标识
DOI:10.1016/j.cma.2024.116992
摘要

In engineering practices, it is a time-consuming procedure to estimate the small failure probability of highly nonlinear and dimensional limit state functions and Kriging-based methods are more effective representatives. However, it is an important challenge to construct the candidate importance sample pool for Kriging-based small failure probability analysis methods with multiple input random variables when the Metropolis-Hastings (M-H) algorithm with acceptance-rejection sampling principle is employed. To address the challenge and estimate the reliability of structures in a more efficient and accurate way, an active learning Kriging model based on the Gibbs importance sampling algorithm (AK-Gibbs) is proposed, especially for the small failure probabilities with nonlinear and high-dimensional limit state functions. A new active learning function that can be directly linked to the global error is first constructed. Weighting coefficients of the joint probability density function in the new active learning function are then determined to select the most probable points (MPPs) and update samples efficiently and accurately. The Gibbs importance sampling algorithm is derived based on the Gibbs algorithm to effectively establish the candidate importance sample pool. An improved global error-based stopping criterion is finally constructed to avoid pre-mature or late-mature for the estimation of small failure probabilities with complicated failure domains. Two numerical and four engineering examples are respectively employed to elaborate and validate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzd完成签到,获得积分10
1秒前
2秒前
诸笑白发布了新的文献求助10
4秒前
4秒前
研友_LOK59L完成签到,获得积分10
6秒前
七子完成签到 ,获得积分10
7秒前
郑盼秋完成签到,获得积分10
7秒前
youjiang发布了新的文献求助10
8秒前
10秒前
孤独收割人完成签到,获得积分10
10秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
12秒前
Upupcc发布了新的文献求助10
14秒前
14秒前
勤劳落雁发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
周周发布了新的文献求助10
16秒前
17秒前
科研通AI5应助解青文采纳,获得10
17秒前
科研通AI5应助魏伯安采纳,获得30
17秒前
nekoneko完成签到,获得积分10
20秒前
20秒前
21秒前
帅关发布了新的文献求助10
21秒前
yyyyy语言发布了新的文献求助10
22秒前
asheng98完成签到 ,获得积分10
23秒前
Chen完成签到,获得积分10
23秒前
慕青应助guajiguaji采纳,获得10
24秒前
圣晟胜发布了新的文献求助10
25秒前
25秒前
25秒前
不会失忆完成签到,获得积分10
27秒前
思源应助路边一颗小草采纳,获得10
27秒前
上官若男应助帅关采纳,获得10
28秒前
qin完成签到,获得积分10
29秒前
29秒前
流浪小诗人完成签到,获得积分10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849