亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AK-Gibbs: An active learning Kriging model based on Gibbs importance sampling algorithm for small failure probabilities

吉布斯抽样 克里金 采样(信号处理) 算法 大都会-黑斯廷斯算法 计算机科学 数学 应用数学 机器学习 人工智能 蒙特卡罗方法 统计 马尔科夫蒙特卡洛 贝叶斯概率 滤波器(信号处理) 计算机视觉
作者
Wei Zhang,Zhao Ziyi,Huanwei Xu,Xiaoyu Li,Zhonglai Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:426: 116992-116992 被引量:1
标识
DOI:10.1016/j.cma.2024.116992
摘要

In engineering practices, it is a time-consuming procedure to estimate the small failure probability of highly nonlinear and dimensional limit state functions and Kriging-based methods are more effective representatives. However, it is an important challenge to construct the candidate importance sample pool for Kriging-based small failure probability analysis methods with multiple input random variables when the Metropolis-Hastings (M-H) algorithm with acceptance-rejection sampling principle is employed. To address the challenge and estimate the reliability of structures in a more efficient and accurate way, an active learning Kriging model based on the Gibbs importance sampling algorithm (AK-Gibbs) is proposed, especially for the small failure probabilities with nonlinear and high-dimensional limit state functions. A new active learning function that can be directly linked to the global error is first constructed. Weighting coefficients of the joint probability density function in the new active learning function are then determined to select the most probable points (MPPs) and update samples efficiently and accurately. The Gibbs importance sampling algorithm is derived based on the Gibbs algorithm to effectively establish the candidate importance sample pool. An improved global error-based stopping criterion is finally constructed to avoid pre-mature or late-mature for the estimation of small failure probabilities with complicated failure domains. Two numerical and four engineering examples are respectively employed to elaborate and validate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
老宇126完成签到,获得积分10
20秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
26秒前
31秒前
聪慧的娜发布了新的文献求助30
32秒前
VPN不好用完成签到,获得积分10
38秒前
聪慧的娜完成签到,获得积分20
43秒前
46秒前
1分钟前
清净163完成签到,获得积分10
1分钟前
Demi发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
拼搏的败完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
笨笨的发布了新的文献求助10
3分钟前
orixero应助笨笨的采纳,获得10
3分钟前
啦啦啦发布了新的文献求助10
3分钟前
华仔应助小全采纳,获得10
3分钟前
3分钟前
Ava应助啦啦啦采纳,获得20
3分钟前
3分钟前
小全发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
leisome完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3322654
求助须知:如何正确求助?哪些是违规求助? 2953910
关于积分的说明 8567146
捐赠科研通 2631437
什么是DOI,文献DOI怎么找? 1439892
科研通“疑难数据库(出版商)”最低求助积分说明 667269
邀请新用户注册赠送积分活动 653767