AK-Gibbs: An active learning Kriging model based on Gibbs importance sampling algorithm for small failure probabilities

吉布斯抽样 克里金 采样(信号处理) 算法 大都会-黑斯廷斯算法 计算机科学 数学 应用数学 机器学习 人工智能 蒙特卡罗方法 统计 马尔科夫蒙特卡洛 贝叶斯概率 滤波器(信号处理) 计算机视觉
作者
Wei Zhang,Ziyi Zhao,Huanwei Xu,Xiaoyu Li,Zhonglai Wang
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:426: 116992-116992 被引量:10
标识
DOI:10.1016/j.cma.2024.116992
摘要

In engineering practices, it is a time-consuming procedure to estimate the small failure probability of highly nonlinear and dimensional limit state functions and Kriging-based methods are more effective representatives. However, it is an important challenge to construct the candidate importance sample pool for Kriging-based small failure probability analysis methods with multiple input random variables when the Metropolis-Hastings (M-H) algorithm with acceptance-rejection sampling principle is employed. To address the challenge and estimate the reliability of structures in a more efficient and accurate way, an active learning Kriging model based on the Gibbs importance sampling algorithm (AK-Gibbs) is proposed, especially for the small failure probabilities with nonlinear and high-dimensional limit state functions. A new active learning function that can be directly linked to the global error is first constructed. Weighting coefficients of the joint probability density function in the new active learning function are then determined to select the most probable points (MPPs) and update samples efficiently and accurately. The Gibbs importance sampling algorithm is derived based on the Gibbs algorithm to effectively establish the candidate importance sample pool. An improved global error-based stopping criterion is finally constructed to avoid pre-mature or late-mature for the estimation of small failure probabilities with complicated failure domains. Two numerical and four engineering examples are respectively employed to elaborate and validate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
纯真的凝安完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
zzz完成签到 ,获得积分10
2秒前
2秒前
游标完成签到,获得积分10
2秒前
Hayat应助淼淼采纳,获得30
3秒前
3秒前
CipherSage应助黄油小花饼干采纳,获得30
3秒前
yao完成签到 ,获得积分10
3秒前
4秒前
嘴馋的我完成签到,获得积分10
5秒前
科目三应助chuizi90采纳,获得10
5秒前
orixero应助柔弱的书芹采纳,获得10
5秒前
6秒前
东方半仙完成签到 ,获得积分10
7秒前
虚心若山发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
张萌发布了新的文献求助20
8秒前
shan发布了新的文献求助10
8秒前
Nolan完成签到,获得积分10
8秒前
8秒前
苏酥发布了新的文献求助10
8秒前
ZY完成签到,获得积分10
8秒前
qqq完成签到 ,获得积分10
8秒前
邵璞发布了新的文献求助10
8秒前
科研通AI6应助南淮采纳,获得50
9秒前
9秒前
9秒前
qaxt完成签到,获得积分10
12秒前
guuu完成签到,获得积分10
13秒前
greeeetwist完成签到,获得积分10
13秒前
13秒前
14秒前
yy发布了新的文献求助10
14秒前
Orange应助开口笑的大菠萝采纳,获得10
14秒前
fairy完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608203
求助须知:如何正确求助?哪些是违规求助? 4692781
关于积分的说明 14875613
捐赠科研通 4716881
什么是DOI,文献DOI怎么找? 2544093
邀请新用户注册赠送积分活动 1509086
关于科研通互助平台的介绍 1472795