Image Segmentation Using Subspace Representation and Sparse Decomposition

子空间拓扑 计算机科学 人工智能 稀疏逼近 最优化问题 模式识别(心理学) 图像分割 组分(热力学) 分割 代表(政治) 算法 政治学 政治 热力学 物理 法学
作者
Shervin Minaee
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.1804.02419
摘要

Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小树枝发布了新的文献求助10
1秒前
RYAN驳回了Akim应助
2秒前
天天完成签到 ,获得积分10
4秒前
Jasper应助Cindy采纳,获得10
5秒前
旧言颜延完成签到 ,获得积分10
5秒前
alverine发布了新的文献求助10
6秒前
个性的南珍完成签到 ,获得积分10
6秒前
折柳完成签到 ,获得积分10
6秒前
细心小鸭子完成签到,获得积分10
7秒前
一一一完成签到,获得积分10
7秒前
7秒前
辛勤怀绿完成签到,获得积分10
7秒前
8秒前
9秒前
htt完成签到,获得积分10
9秒前
cheersyu发布了新的文献求助10
9秒前
10秒前
念所三旬发布了新的文献求助10
11秒前
奶糖爱果冻完成签到 ,获得积分10
12秒前
大唐元给大唐元的求助进行了留言
13秒前
优秀沛春发布了新的文献求助10
13秒前
研友_pnx7JL发布了新的文献求助10
13秒前
今天你读文献了吗完成签到,获得积分10
14秒前
14秒前
15秒前
concise完成签到 ,获得积分10
15秒前
16秒前
hhh完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
畅快从云完成签到 ,获得积分10
17秒前
17秒前
17秒前
田様应助周而复始@采纳,获得10
17秒前
羲合发布了新的文献求助10
18秒前
keep完成签到 ,获得积分10
18秒前
19秒前
研友_pnx7JL完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969557
求助须知:如何正确求助?哪些是违规求助? 3514377
关于积分的说明 11173836
捐赠科研通 3249692
什么是DOI,文献DOI怎么找? 1794979
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836