Image Segmentation Using Subspace Representation and Sparse Decomposition

子空间拓扑 计算机科学 人工智能 稀疏逼近 最优化问题 模式识别(心理学) 图像分割 组分(热力学) 分割 代表(政治) 算法 政治学 政治 热力学 物理 法学
作者
Shervin Minaee
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.1804.02419
摘要

Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
ttTINA完成签到,获得积分10
3秒前
夜已深完成签到,获得积分10
3秒前
3秒前
CipherSage应助caisongliang采纳,获得10
6秒前
7秒前
kaixinjh1234发布了新的文献求助10
7秒前
坚定尔白发布了新的文献求助10
8秒前
Ykx完成签到,获得积分10
8秒前
jun发布了新的文献求助20
8秒前
10秒前
10秒前
Singularity应助单纯的思松采纳,获得10
10秒前
NexusExplorer应助无辜的夏山采纳,获得10
14秒前
猫滩儿完成签到,获得积分10
14秒前
朱杰发布了新的文献求助10
15秒前
15秒前
16秒前
可靠往事完成签到,获得积分10
16秒前
夏天呀发布了新的文献求助10
16秒前
Reese发布了新的文献求助10
17秒前
优美飞薇发布了新的文献求助30
17秒前
17秒前
jun完成签到,获得积分10
18秒前
flywee完成签到,获得积分10
18秒前
懦弱的安珊完成签到,获得积分10
18秒前
是是是完成签到,获得积分10
20秒前
CAE上路到上吊完成签到,获得积分10
21秒前
LIXI发布了新的文献求助10
21秒前
AN发布了新的文献求助10
22秒前
爆米花应助夜夕采纳,获得10
22秒前
欢喜完成签到 ,获得积分20
23秒前
24秒前
24秒前
jihaowen完成签到,获得积分10
24秒前
25秒前
lambda发布了新的文献求助10
25秒前
坚定尔白完成签到,获得积分10
25秒前
26秒前
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312036
求助须知:如何正确求助?哪些是违规求助? 2944707
关于积分的说明 8521005
捐赠科研通 2620360
什么是DOI,文献DOI怎么找? 1432797
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650092