Image Segmentation Using Subspace Representation and Sparse Decomposition

子空间拓扑 计算机科学 人工智能 稀疏逼近 最优化问题 模式识别(心理学) 图像分割 组分(热力学) 分割 代表(政治) 算法 政治学 政治 热力学 物理 法学
作者
Shervin Minaee
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.1804.02419
摘要

Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Sakura发布了新的文献求助10
1秒前
1秒前
CC完成签到 ,获得积分10
2秒前
gao发布了新的文献求助10
2秒前
2秒前
3秒前
缓慢谷雪完成签到,获得积分10
3秒前
可爱凡波发布了新的文献求助10
3秒前
王哇噻发布了新的文献求助30
3秒前
犹豫耳机完成签到,获得积分10
4秒前
4秒前
GGB发布了新的文献求助10
4秒前
fei发布了新的文献求助30
5秒前
凌源枫完成签到 ,获得积分10
5秒前
可爱的函函应助杨蒙采纳,获得10
5秒前
zzz完成签到,获得积分10
5秒前
6秒前
斯文败类应助Sakura采纳,获得10
6秒前
Finley发布了新的文献求助10
6秒前
sue发布了新的文献求助10
6秒前
XX完成签到,获得积分10
7秒前
7秒前
大力蚂蚁发布了新的文献求助10
7秒前
luluan完成签到,获得积分10
9秒前
虚幻夜山发布了新的文献求助10
9秒前
9秒前
9秒前
852应助栀初采纳,获得10
9秒前
AmosLi727发布了新的文献求助10
10秒前
花鲨完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
11秒前
66发布了新的文献求助30
11秒前
soulking完成签到,获得积分10
12秒前
12秒前
FashionBoy应助gustavo采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277