假电容
假电容器
材料科学
钒
倍半氧化物
氮化钒
超级电容器
储能
化学工程
氧化钒
金红石
锐钛矿
电解质
电化学
纳米技术
电极
化学
冶金
热力学
氮化物
物理化学
图层(电子)
功率(物理)
催化作用
工程类
物理
光催化
生物化学
作者
Bo‐Tian Liu,Xiang‐Mei Shi,Xingyou Lang,Lin Gu,Zi Wen,Ming Zhao,Qing Jiang
标识
DOI:10.1038/s41467-018-03700-3
摘要
Abstract Pseudocapacitance holds great promise for improving energy densities of electrochemical supercapacitors, but state-of-the-art pseudocapacitive materials show capacitances far below their theoretical values and deliver much lower levels of electrical power than carbon-based materials due to poor cation accessibility and/or long-range electron transferability. Here we show that in situ corundum-to-rutile phase transformation in electron-correlated vanadium sesquioxide can yield nonstoichiometric rutile vanadium dioxide layers that are composed of highly sodium ion accessible oxygen-deficiency quasi-hexagonal tunnels sandwiched between conductive rutile slabs. This unique structure serves to boost redox and intercalation kinetics for extraordinary pseudocapacitive energy storage in hierarchical isomeric vanadium oxides, leading to a high specific capacitance of ~1856 F g –1 (almost sixfold that of the pristine vanadium sesquioxide and dioxide) and a bipolar charge/discharge capability at ultrafast rates in aqueous electrolyte. Symmetric wide voltage window pseudocapacitors of vanadium oxides deliver a power density of ~280 W cm –3 together with an exceptionally high volumetric energy density of ~110 mWh cm –3 as well as long-term cycling stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI