E-nose, e-tongue and e-eye for edible olive oil characterization and shelf life assessment: A powerful data fusion approach

电子鼻 橄榄油 电子舌 化学 质量评定 模式识别(心理学) 人工智能 生物系统 食品科学 计算机科学 评价方法 工程类 品味 生物 可靠性工程
作者
Susanna Buratti,Cristina Malegori,S. Benedetti,Paolo Oliveri,G. Giovanelli
出处
期刊:Talanta [Elsevier]
卷期号:182: 131-141 被引量:113
标识
DOI:10.1016/j.talanta.2018.01.096
摘要

The aim of this work was to investigate the applicability of e-senses (electronic nose, electronic tongue and electronic eye) for the characterization of edible olive oils (extra virgin, olive and pomace) and for the assessment of extra virgin olive oil and olive oil quality decay during storage at different temperatures. In order to obtain a complete description of oil samples, physico-chemical analyses on quality and nutritional parameters were also performed. Data were processed by PCA and a targeted data processing flow-sheet has been applied to physico-chemical and e-senses dataset starting from data pre-processing introducing an innovative normalization method, called t0 centering. On e-senses data a powerful mid-level data fusion approach has been employed to extract relevant information from different analytical sources combining their individual contributions. On physico-chemical data, an alternative approach for grouping extra virgin olive oil and olive oil samples on the basis of their freshness was applied and two classes were identified: fresh and oxidized. A k-NN classification rule was developed to test the performance of e-senses to classify samples in the two classes of freshness and the average value of correctly classified samples was 94%. Results demonstrated that the combined application of e-senses and the innovative data processing strategy allows to characterize edible olive oils of different categories on the basis of their sensorial properties and also to follow the evolution during storage of extra-virgin olive oil and olive oil sensorial properties thus assessing the quality decay of oils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助ggg采纳,获得10
2秒前
科研通AI2S应助谦让友绿采纳,获得10
2秒前
眼睛大的易绿完成签到,获得积分10
2秒前
一路美好完成签到,获得积分10
2秒前
蔡小葵发布了新的文献求助10
3秒前
麓谷发布了新的文献求助10
3秒前
3秒前
刑不上院士,礼不下博士完成签到,获得积分10
4秒前
sherlock关注了科研通微信公众号
4秒前
daisy发布了新的文献求助10
4秒前
安东尼发布了新的文献求助10
4秒前
orixero应助allofme采纳,获得10
4秒前
陈HIAHIA完成签到,获得积分20
6秒前
打打应助濯枝雨采纳,获得10
6秒前
丘比特应助Yueyue采纳,获得10
7秒前
7秒前
binggan发布了新的文献求助10
7秒前
zjq完成签到,获得积分10
8秒前
李健的小迷弟应助Jtiger采纳,获得10
8秒前
8秒前
香蕉觅云应助猪猪hero采纳,获得10
8秒前
柯南完成签到,获得积分10
8秒前
李健应助panwei采纳,获得10
9秒前
9秒前
9秒前
CodeCraft应助烟雨醉巷采纳,获得10
9秒前
桃桃奶盖发布了新的文献求助10
9秒前
10秒前
10秒前
小王完成签到,获得积分10
11秒前
谦让友绿完成签到,获得积分10
11秒前
12秒前
好运来发布了新的文献求助10
12秒前
13秒前
闪闪糖豆发布了新的文献求助10
13秒前
顺利寒松发布了新的文献求助10
15秒前
15秒前
allofme发布了新的文献求助10
15秒前
ggg发布了新的文献求助10
15秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470747
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9085172
捐赠科研通 2754236
什么是DOI,文献DOI怎么找? 1511336
邀请新用户注册赠送积分活动 698372
科研通“疑难数据库(出版商)”最低求助积分说明 698253