亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis

电催化剂 电子转移 析氧 纳米技术 电化学 材料科学 化学 电化学能量转换 化学物理 电极 物理化学
作者
Cheng Tang,Haofan Wang,Qiang Zhang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:51 (4): 881-889 被引量:484
标识
DOI:10.1021/acs.accounts.7b00616
摘要

ConspectusVarious gas-involving energy electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER), has witnessed increasing concerns recently for the sake of clean, renewable, and efficient energy technologies. However, these heterogeneous reactions exhibit sluggish kinetics due to multistep electron transfer and only occur at triple-phase boundary regions. Up to now, tremendous attention has been attracted to develop cost-effective and high-performance electrocatalysts to boost the electrocatalytic activities as promising alternatives to noble metal counterparts. In addition to the prolific achievements in materials science, the advances in interface chemistry are also very critical in consideration of the complex phenomena proceeded at triple-phase boundary regions, such as mass diffusion, electron transfer, and surface reaction. Therefore, insightful principles and effective strategies for a comprehensive optimization, ranging from active sites to electrochemical interface, are necessary to fully enhance the electrocatalytic performance aiming at practical device applications.In this Account, we give an overview of our recent attempts toward efficient gas-involving electrocatalysis with multiscale principles from the respect of electronic structure, hierarchical morphology, and electrode interface step by step. It is widely accepted that the intrinsic activity of individual active sites is directly influenced by their electronic structure. Heteroatom doping and topological defects are demonstrated to be the most effective strategies for metal-free nanocarbon materials, while the cationic (e.g., Ni, Fe, Co, Sn) and anionic (e.g., O, S, OH) regulation is revealed to be a promising method for transition metal compounds, to alter the electronic structure and generate high activity. Additionally, the apparent activity of the whole electrocatalyst is significantly impacted by its hierarchical morphology. The active sites of nanocarbon materials are expected to be enriched on the surface for a full exposure and utilization; the hybridization of other active components with nanocarbon materials should achieve a uniform dispersion in nanoscale and a strongly coupled interface, thereby ensuring the electron transfer and boosting the activity. Furthermore, steady and favorable electrochemical interfaces are strongly anticipated in working electrodes for optimal reaction conditions. The powdery electrocatalysts are suggested to be constructed into self-supported electrodes for more efficient and stable catalysis integrally, while the local microenvironment can be versatilely modified by ionic liquids with more beneficial gas solubility and hydrophobicity.Collectively, with the all-round regulation of the electronic structure, hierarchical morphology, and electrode interface, the electrocatalytic performances are demonstrated to be comprehensively facilitated. Such multiscale principles stemmed from the in-depth insights on the structure–activity relationship and heterogeneous reaction characteristics will no doubt pave the way for the future development of gas-involving energy electrocatalysis, and also afford constructive inspirations in a broad range of research including CO2 reduction reaction, hydrogen peroxide production, nitrogen reduction reaction, and other important electrocatalytic activation of small molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
binyao2024完成签到,获得积分10
46秒前
xiaolang2004完成签到,获得积分10
50秒前
huichuanyin完成签到 ,获得积分10
2分钟前
2分钟前
元水云发布了新的文献求助100
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
烟消云散完成签到,获得积分10
3分钟前
睡到自然醒完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
qinglongtsmc完成签到,获得积分10
6分钟前
如沐春风发布了新的文献求助20
7分钟前
赘婿应助如沐春风采纳,获得10
7分钟前
ffff完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
如沐春风完成签到,获得积分10
8分钟前
如沐春风发布了新的文献求助10
8分钟前
方沅完成签到,获得积分10
8分钟前
幽默的南珍完成签到 ,获得积分10
9分钟前
小蘑菇应助风华正茂采纳,获得10
9分钟前
我是老大应助科研通管家采纳,获得30
9分钟前
9分钟前
科研小菜鸡完成签到 ,获得积分20
9分钟前
9分钟前
10分钟前
10分钟前
10分钟前
朱文韬发布了新的文献求助10
10分钟前
nini发布了新的文献求助10
10分钟前
沿途有你完成签到 ,获得积分10
10分钟前
nini完成签到,获得积分10
11分钟前
乐仔完成签到,获得积分10
11分钟前
11分钟前
HEIKU应助乐仔采纳,获得10
11分钟前
tangzhidi发布了新的文献求助10
11分钟前
完美世界应助科研通管家采纳,获得10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753871
求助须知:如何正确求助?哪些是违规求助? 3297262
关于积分的说明 10098204
捐赠科研通 3012094
什么是DOI,文献DOI怎么找? 1654458
邀请新用户注册赠送积分活动 788787
科研通“疑难数据库(出版商)”最低求助积分说明 753022