纤维素
自愈水凝胶
离子键合
材料科学
离子电导率
化学工程
离子强度
纤维素乙醇
膨润土
离子液体
纳米技术
电解质
离子
化学
高分子化学
有机化学
电极
物理化学
水溶液
工程类
催化作用
作者
Siheng Wang,Le Yu,Shanshan Wang,Lei Zhang,Lü Chen,Xu Xu,Zhanqian Song,He Liu,Chaoji Chen
标识
DOI:10.1038/s41467-022-30224-8
摘要
Ionic conductive hydrogels prepared from naturally abundant cellulose are ideal candidates for constructing flexible electronics from the perspective of commercialization and environmental sustainability. However, cellulosic hydrogels featuring both high mechanical strength and ionic conductivity remain extremely challenging to achieve because the ionic charge carriers tend to destroy the hydrogen-bonding network among cellulose. Here we propose a supramolecular engineering strategy to boost the mechanical performance and ionic conductivity of cellulosic hydrogels by incorporating bentonite (BT) via the strong cellulose-BT coordination interaction and the ion regulation capability of the nanoconfined cellulose-BT intercalated nanostructure. A strong (compressive strength up to 3.2 MPa), tough (fracture energy up to 0.45 MJ m-3), yet highly ionic conductive and freezing tolerant (high ionic conductivities of 89.9 and 25.8 mS cm-1 at 25 and -20 °C, respectively) all-natural cellulose-BT hydrogel is successfully realized. These findings open up new perspectives for the design of cellulosic hydrogels and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI