Enhancing Programming Knowledge Tracing by Interacting Programming Skills and Student Code

计算机科学 追踪 程序设计语言 编码(集合论) 计算机程序设计 嵌入 归纳程序设计 程序性编程 程序设计范式 多媒体 数学教育 人工智能 心理学 集合(抽象数据类型)
作者
Mengxia Zhu,Siqi Han,Peng Yuan,Xuesong Lu
标识
DOI:10.1145/3506860.3506870
摘要

Programming education has received extensive attention in recent years due to the increasing demand for programming ability in almost all industries. Educational institutions have widely employed online judges for programming training, which can help teachers automatically assess programming assignments by executing students’ code with test cases. However, a more important teaching process with online judges should be to evaluate how students master each of the programming skills such as strings or pointers, so that teachers may give personalized feedback and help them proceed to the success more efficiently. Previous studies have adopted deep models of knowledge tracing to evaluate a student’s mastery level of skills during the interaction with programming exercises. However, existing models generally follow the conventional assumption of knowledge tracing that each programming exercise requires only one skill, whereas in practice a programming exercise usually inspects the comprehensive use of multiple skills. Moreover, the feature of student code is often simply concatenated with other input features without the consideration of its relationship with the inspected programming skills. To bridge the gap, we propose a simple attention-based approach to learn from student code the features reflecting the multiple programming skills inspected by each programming exercise. In particular, we first use a program embedding method to obtain the representations of student code. Then we use the skill embeddings of each programming exercise to query the embeddings of student code and form an aggregated hidden state representing how the inspected skills are used in the student code. We combine the learned hidden state with DKT (Deep Knowledge Tracing), an LSTM (Long Short-Term Memory)-based knowledge tracing model, and show the improvements over baseline model. We point out some possible directions to improve the current work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
利昂完成签到,获得积分10
刚刚
wx发布了新的文献求助10
刚刚
InfoNinja应助danzong采纳,获得30
刚刚
刚刚
123发布了新的文献求助10
刚刚
1秒前
飞鸟发布了新的文献求助10
2秒前
fff发布了新的文献求助10
3秒前
隐形的采柳完成签到,获得积分10
3秒前
3秒前
panda发布了新的文献求助10
3秒前
高大zj发布了新的文献求助30
4秒前
积极的中蓝完成签到,获得积分10
4秒前
5秒前
懵懂的紫萍应助hello采纳,获得10
5秒前
11112233发布了新的文献求助10
5秒前
子车茗应助曾会锋采纳,获得10
5秒前
利昂发布了新的文献求助10
6秒前
Aurora发布了新的文献求助10
6秒前
fifteen发布了新的文献求助10
7秒前
123完成签到,获得积分20
10秒前
11秒前
111完成签到,获得积分10
11秒前
koayer完成签到,获得积分10
11秒前
LLLLLLLLLLLLL完成签到,获得积分10
11秒前
Ava应助高大zj采纳,获得10
12秒前
12秒前
明理的晓绿完成签到,获得积分10
12秒前
完美世界应助平淡妙梦采纳,获得10
12秒前
烟花应助123采纳,获得10
15秒前
任白993完成签到,获得积分0
15秒前
16秒前
晨天有你发布了新的文献求助10
16秒前
17秒前
20秒前
香蕉味大辣条完成签到,获得积分10
20秒前
诚心的初露完成签到,获得积分10
20秒前
完美世界应助科研通管家采纳,获得10
21秒前
无花果应助科研通管家采纳,获得10
21秒前
英姑应助wsh采纳,获得10
21秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153522
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861275
捐赠科研通 2462658
什么是DOI,文献DOI怎么找? 1310909
科研通“疑难数据库(出版商)”最低求助积分说明 629416
版权声明 601809