Enhancing Programming Knowledge Tracing by Interacting Programming Skills and Student Code

计算机科学 追踪 程序设计语言 编码(集合论) 计算机程序设计 嵌入 归纳程序设计 程序性编程 程序设计范式 多媒体 数学教育 人工智能 心理学 集合(抽象数据类型)
作者
Mengxia Zhu,Siqi Han,Peng Yuan,Xuesong Lu
标识
DOI:10.1145/3506860.3506870
摘要

Programming education has received extensive attention in recent years due to the increasing demand for programming ability in almost all industries. Educational institutions have widely employed online judges for programming training, which can help teachers automatically assess programming assignments by executing students’ code with test cases. However, a more important teaching process with online judges should be to evaluate how students master each of the programming skills such as strings or pointers, so that teachers may give personalized feedback and help them proceed to the success more efficiently. Previous studies have adopted deep models of knowledge tracing to evaluate a student’s mastery level of skills during the interaction with programming exercises. However, existing models generally follow the conventional assumption of knowledge tracing that each programming exercise requires only one skill, whereas in practice a programming exercise usually inspects the comprehensive use of multiple skills. Moreover, the feature of student code is often simply concatenated with other input features without the consideration of its relationship with the inspected programming skills. To bridge the gap, we propose a simple attention-based approach to learn from student code the features reflecting the multiple programming skills inspected by each programming exercise. In particular, we first use a program embedding method to obtain the representations of student code. Then we use the skill embeddings of each programming exercise to query the embeddings of student code and form an aggregated hidden state representing how the inspected skills are used in the student code. We combine the learned hidden state with DKT (Deep Knowledge Tracing), an LSTM (Long Short-Term Memory)-based knowledge tracing model, and show the improvements over baseline model. We point out some possible directions to improve the current work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
焦糖咸鱼完成签到,获得积分10
1秒前
李健的小迷弟应助个性鲂采纳,获得10
2秒前
2秒前
2秒前
2秒前
爆米花应助XudongHou采纳,获得30
2秒前
bkagyin应助蓝兰采纳,获得10
4秒前
anuo发布了新的文献求助10
4秒前
给我一块钱完成签到,获得积分10
4秒前
CipherSage应助wrx_KGM采纳,获得10
4秒前
liars发布了新的文献求助10
5秒前
Georges-09发布了新的文献求助10
6秒前
wenbo完成签到,获得积分0
6秒前
7秒前
7秒前
8秒前
漫漫长夜发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
自强不息发布了新的文献求助10
11秒前
无奈凝莲发布了新的文献求助10
11秒前
nasndn完成签到,获得积分20
12秒前
13秒前
会笑的花完成签到,获得积分10
13秒前
wang发布了新的文献求助10
13秒前
一二完成签到,获得积分10
13秒前
个性鲂发布了新的文献求助10
13秒前
宇航完成签到,获得积分10
14秒前
14秒前
15秒前
15秒前
15秒前
LH发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751