Development of a deep learning model for automatic localization of radiographic markers of proposed dental implant site locations

人工智能 射线照相术 锥束ct 深度学习 计算机科学 DICOM 医学影像学 医学 模式识别(心理学) 计算机断层摄影术 放射科
作者
Mona Alsomali,Shatha Alghamdi,Shahad Alotaibi,Sara A. Alfadda,Νajwa Altwaijry,Isra Al-Turaiki,Asma’a Abdurrahman Al-Ekrish
出处
期刊:The Saudi Dental Journal 卷期号:34 (3): 220-225 被引量:8
标识
DOI:10.1016/j.sdentj.2022.01.002
摘要

To develop a Deep Learning Artificial Intelligence (AI) model that automatically localizes the position of radiographic stent gutta percha (GP) markers in cone beam computed tomography (CBCT) images to identify proposed implant sites within the images, and to test the performance of the newly developed AI model.Thirty-four CBCT datasets were used for initial model training, validation and testing. The CBCT datasets were those of patients who had a CBCT examination performed wearing a radiographic stent for implant treatment planning. The datasets were exported in Digital Imaging and Communications in Medicine (DICOM), then imported into the software Horos ®. Each GP marker was manually labelled for object detection and recognition by the deep learning model by drawing rectangles around the GP markers in all axial images, then the labelled images were split into training, validation, and test sets. The axial sections of 30 CBCT datasets were randomly divided into training and validation sets. four CBCT datasets were used for testing the performance of the deep learning model. Descriptive statistics were calculated for the number of GP markers present, number of correct and incorrect identifications of GP markers.The AI model had an 83% true positive rate for identification of the GP markers. Of the areas labelled by the AI model as GP markers, 28 % were not truly GP markers, but the overall false positive rate was 2.8 %.An AI model for localization of GP markers in CBCT images was able to identify most of the GP markers, but 2.8% of the results were false positive and 17% were missed GP markers. Using only axial images for training an AI program is not enough to give an accurate AI model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cedric发布了新的文献求助10
1秒前
1秒前
muzi完成签到,获得积分10
2秒前
小白完成签到,获得积分20
2秒前
陆柒完成签到,获得积分10
3秒前
xyl关注了科研通微信公众号
3秒前
111完成签到,获得积分10
3秒前
希望天下0贩的0应助leozhe采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
勤劳的小牛蛙完成签到,获得积分20
4秒前
4秒前
复杂尔蓝完成签到 ,获得积分10
4秒前
共享精神应助顺利映天采纳,获得10
5秒前
6秒前
刘斌发布了新的文献求助10
6秒前
英俊的铭应助Lyp采纳,获得10
6秒前
viavia发布了新的文献求助10
6秒前
Lucas应助oi采纳,获得10
6秒前
7秒前
蝈蝈应助多多采纳,获得30
7秒前
田様应助酷炫的傲易采纳,获得10
7秒前
cyy完成签到 ,获得积分10
7秒前
111发布了新的文献求助10
8秒前
9秒前
狂野东蒽发布了新的文献求助10
10秒前
10秒前
Echo完成签到,获得积分10
10秒前
小吃货发布了新的文献求助10
10秒前
10秒前
生菜发布了新的文献求助10
11秒前
可爱的函函应助渊思采纳,获得10
11秒前
11秒前
surain发布了新的文献求助10
12秒前
邝边边发布了新的文献求助10
12秒前
12秒前
香蕉觅云应助dongsheng采纳,获得10
12秒前
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153026
求助须知:如何正确求助?哪些是违规求助? 2804161
关于积分的说明 7857753
捐赠科研通 2461956
什么是DOI,文献DOI怎么找? 1310610
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794