An improved teaching–learning-based optimization algorithm for solving global optimization problem

计算机科学 趋同(经济学) 数学优化 集合(抽象数据类型) 人口 利用 过程(计算) 局部最优 班级(哲学) 进化算法 全局优化 最优化问题 算法 人工智能 机器学习 数学 经济 人口学 社会学 程序设计语言 操作系统 经济增长 计算机安全
作者
Debao Chen,Feng Zou,Li Zheng,Jiangtao Wang,Suwen Li
出处
期刊:Information Sciences [Elsevier BV]
卷期号:297: 171-190 被引量:88
标识
DOI:10.1016/j.ins.2014.11.001
摘要

Teaching–learning-based optimization (TLBO) is a recently proposed population-based algorithm that simulates the process of teaching and learning. Compared with other evolutionary algorithms, TLBO has fewer parameters that must be determined during the renewal process, and is very efficient for certain optimization problems. However, as a population-based algorithm, certain complex problems cause TLBO to exhibit local convergence phenomena. Therefore, to improve the global performance of TLBO, we have designed local learning and self-learning methods to enhance the search ability of TLBO. In the learner phase, every individual learns from both the teacher of the current generation and other individuals. Whether these individuals are neighbours or random individuals from the whole class is determined probabilistically. In the self-learning phase, individuals either renew their positions according to their own gradient information, or randomly exploit new positions according to a design based on the means and variances. To maintain local diversity, all individuals are rearranged after a set number of iterations. The proposed algorithm is tested on a number of functions, and its performance is compared with that of other well-known optimization algorithms. The results indicate that the improved TLBO attains good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助SDNUDRUG采纳,获得10
刚刚
23533213发布了新的文献求助10
刚刚
yinhaowu发布了新的文献求助10
2秒前
Cecilia发布了新的文献求助10
2秒前
3秒前
3秒前
是苗苗丫完成签到,获得积分10
4秒前
5秒前
AGuang完成签到,获得积分10
5秒前
Henry完成签到,获得积分0
5秒前
所所应助科学家采纳,获得10
5秒前
斯文败类应助神秘玩家采纳,获得10
6秒前
Yana1311完成签到,获得积分10
6秒前
小菜完成签到 ,获得积分10
7秒前
8秒前
GingerF应助Henry采纳,获得500
8秒前
8秒前
8秒前
sherry发布了新的文献求助10
9秒前
竹筏过海应助mmyhn采纳,获得30
9秒前
10秒前
alu发布了新的文献求助10
10秒前
西早发布了新的文献求助10
10秒前
CipherSage应助griffon采纳,获得10
10秒前
zhou完成签到 ,获得积分10
10秒前
11秒前
冷静的振家完成签到,获得积分10
12秒前
perdition完成签到 ,获得积分10
13秒前
yanan完成签到,获得积分10
13秒前
慕青应助23533213采纳,获得10
13秒前
项目多多完成签到,获得积分10
13秒前
左左发布了新的文献求助10
13秒前
zho发布了新的文献求助10
16秒前
盈ying发布了新的文献求助10
16秒前
小伙伴发布了新的文献求助10
16秒前
JOKER完成签到 ,获得积分10
16秒前
juju发布了新的文献求助10
16秒前
16秒前
赘婿应助博修采纳,获得10
16秒前
123td完成签到,获得积分10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149