Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae

维吉尼亚霉素 突变体 生物 链霉菌 基因 抄写(语言学) 遗传学 细菌 语言学 哲学
作者
Kiyoshi Matsuno,Yasuhiro Yamada,Chang-Kwon Lee,Takuya Nihira
出处
期刊:Archives of Microbiology [Springer Nature]
被引量:51
标识
DOI:10.1007/s00203-003-0625-5
摘要

The Streptomyces virginiae gamma-butyrolactone autoregulator virginiae butanolide is a low-molecular-weight Streptomyces hormone eliciting virginiamycin biosynthesis through its binding to the specific receptor protein, BarA. Immediately downstream of barA lies barB, the transcription of which is tightly repressed by BarA in the absence of virginiae butanolide and derepressed in its presence. Thus, BarB is next to BarA on the virginiae butanolide-BarA signaling cascade. An in-frame 279-bp deletion was introduced into the barB allele, which rendered it inactive by eliminating the majority of the coding region, including the helix-turn-helix DNA-binding motif. No significant change was observed with the Delta barB mutant with respect to the timing or amount of virginiae butanolide production, or the morphological differentiation on solid media, indicating that barB neither participates in virginiae butanolide biosynthesis nor in cytodifferentiation. In contrast, analysis of virginiamycin production in the Delta barB mutant revealed that production of both virginiamycin M(1) and virginiamycin S occurred immediately after virginiae butanolide production, 2-3 h earlier than in the wild-type strain, indicating that BarB participates in the temporal retardation of virginiamycin production after virginiae butanolide inactivates the repressor function of BarA. RT-PCR analysis of the transcription of several genes surrounding barA-barB by the Delta barB mutant indicated that BarB plays a negative regulatory role, directly or indirectly, in the transcription of barZ, vmsR, and orf5 located upstream of barB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wangjunfeng发布了新的文献求助30
刚刚
gy完成签到,获得积分10
1秒前
于111发布了新的文献求助10
1秒前
汉堡包应助shawn采纳,获得10
2秒前
ID8发布了新的文献求助10
2秒前
宋志远发布了新的文献求助10
3秒前
3秒前
3秒前
orixero应助haihuhu采纳,获得30
4秒前
无花果应助闪闪垣采纳,获得10
5秒前
Master发布了新的文献求助10
6秒前
早睡计划发布了新的文献求助10
6秒前
8秒前
8秒前
科研通AI40应助由哎采纳,获得10
8秒前
橘子皮完成签到,获得积分10
9秒前
11秒前
12秒前
勤奋的寒荷完成签到,获得积分10
13秒前
一二发布了新的文献求助10
13秒前
14秒前
M2106完成签到,获得积分10
14秒前
15秒前
16秒前
xiaoyan完成签到,获得积分10
17秒前
btsforever发布了新的文献求助10
18秒前
可爱的函函应助早睡计划采纳,获得10
19秒前
宓夜蓉发布了新的文献求助10
20秒前
婷婷发布了新的文献求助30
21秒前
李健的小迷弟应助psj采纳,获得10
21秒前
lirongcas发布了新的文献求助10
22秒前
还好完成签到,获得积分10
23秒前
26秒前
26秒前
27秒前
yar应助晾猫人采纳,获得10
27秒前
前排61完成签到,获得积分10
27秒前
28秒前
30秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473073
求助须知:如何正确求助?哪些是违规求助? 3065840
关于积分的说明 9095713
捐赠科研通 2756737
什么是DOI,文献DOI怎么找? 1512525
邀请新用户注册赠送积分活动 699019
科研通“疑难数据库(出版商)”最低求助积分说明 698752