An Effective Way to Improve the Structural Stability and Photoelectrochemical Performance of BiVO4 Photoanodes in Basic Media: Surface Passivation with Zinc Ferrite

分解水 材料科学 光电化学电池 氧化物 钝化 电解质 太阳能 尖晶石 化学工程 电极 纳米技术 光电子学 化学 电气工程 催化作用 图层(电子) 冶金 光催化 工程类 物理化学 生物化学
作者
Tae Woo Kim,Kyoung‐Shin Choi
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (49): 3677-3677
标识
DOI:10.1149/ma2016-02/49/3677
摘要

A photoelectrochemical water splitting technology (PEC) using sustainable solar energy has been considered as one of the most promising methods to produce directly renewable energy (i.e. H 2 ) from water. This system has still lots of challenges in improving water-splitting PEC efficiency. In particularly, development of electrode materials to covert efficiently solar energy to hydrogen is one of the most challenges facing many scientists and engineers in this field. Among the electrode materials for use in a water-splitting PEC cell, n-type bismuth vanadate, or BiVO 4 , has recently been identified as a promising metal oxide photoanode for O 2 evolution, because of a narrow band gap (2.4-2.5 eV) for absorbing substantial position of visible spectrum and a favourable conduction band edge position which is very near the thermodynamic hydrogen reduction potential. Most of the BiVO 4 studies for water-splitting PECs have mainly been investigated for use under neutral conditions (pH ∼7) because BiVO 4 is chemically unstable and gradually dissolves in strong basic and acidic solutions. When the operating conditions of BiVO 4 can be extended to basic or acidic media, BiVO 4 can be coupled to more diverse catalysts or photocathodes, which perform optimally only under basic or acidic conditions. Additionally, using basic or acidic media may offer an advantage of achieving higher solution conductivities without using additional supporting electrolytes or buffers for PEC operation. In order to solve such weakness, we tried to add spinel zinc ferrite (ZnFe 2 O 4 ) as a protection layer to use BiVO 4 photoanode in basic condition. A thin layer of ZnFe 2 O 4 was placed on the surface of a nanoporous BiVO 4 electrode using following process: (1) photodeposition of iron oxyhydroxide (FeOOH), (2) a mild chemical and thermal treatment of FeOOH with Zn precursor. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that a ZnFe 2 O 4 layer formed a uniform and conformal coating layer on a BiVO 4 particles, and the thickness of the layer was 10 -15 nm. The ZnFe 2 O 4 coating layer was very thin and was x-ray amorphous structure as evidenced by a conventional powder x-ray diffractometer. But, the selected area electron diffraction (SAED) clearly indicated that ZnFe 2 O 4 was spinel structure. The effect of the ZnFe 2 O 4 layer on the prevention of chemical dissolution of BiVO 4 in basic media in the dark was first tested by immersing BiVO 4 and BiVO4/ZnFe 2 O 4 electrode in a 0.1 M KOH solution (pH 13) for 72 h. The SEM images taken after 72 h of immersion showed that the ZnFe 2 O 4 -free BiVO 4 electrode was considerably dissolved, whereas the ZnFe 2 O 4 -coated BiVO 4 electrode did not show any detectable sign of dissolution. The effect of the ZnFe 2 O 4 layer on the photoelectrochemical properties and photostabilities of BiVO 4 was tested by measuring J−V and J-t plots in 0.1 M KOH (pH 13) under simulated AM 1.5G irradiation (100 mW/cm 2 ), using a three-electrode configuration. The obtained BiVO 4 /ZnFe 2 O 4 electrode generated a photocurrent density of 2.76 mA/cm 2 at 1.23 V vs. RHE with a significantly improved stability compared to the pristine BiVO 4 electrode (ca. 1.04 mA/cm 2 at 1.23 V vs. RHE). The incident and absorbed photon-to-current conversion efficiencies along with absorption spectra suggested that the ZnFe 2 O 4 protection layer also contributes to photocurrent generation by increasing photon absorption and electron-hole separation of the BiVO 4 layer. In addition, when the surface of the ZnFe 2 O 4 layer was modified with Co 2+ ions as oxygen evolution reaction catalyst, the resulting BiVO 4 /ZnFe 2 O 4 /Co 2+ electrode generates a more improved photocurrent density (ca. 2.83 mA/cm 2 at 1.23 V vs. RHE) with a more significantly improved stability. These results suggest that further investigation of protection and catalyst layers can enable more stable and efficient operation of BiVO 4 -based photoanodes in basic media.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上惜天完成签到 ,获得积分10
5秒前
Sunny完成签到 ,获得积分10
7秒前
12秒前
zang完成签到 ,获得积分10
13秒前
北辰完成签到 ,获得积分10
15秒前
verbal2005发布了新的文献求助10
16秒前
扶我起来写论文完成签到 ,获得积分10
19秒前
奋斗的妙海完成签到 ,获得积分0
24秒前
Owen应助聪明的嘉熙采纳,获得10
31秒前
Danish完成签到,获得积分10
31秒前
32秒前
海子完成签到,获得积分10
40秒前
serpant完成签到,获得积分10
41秒前
跪斗丶完成签到 ,获得积分10
47秒前
chaxie完成签到,获得积分10
49秒前
康桥完成签到 ,获得积分10
52秒前
成就的孤晴完成签到 ,获得积分10
55秒前
桐桐应助An采纳,获得10
55秒前
奋斗跳跳糖完成签到,获得积分10
57秒前
淡定碧玉完成签到 ,获得积分10
1分钟前
JOY完成签到 ,获得积分10
1分钟前
一只橘子完成签到 ,获得积分10
1分钟前
aaa完成签到,获得积分10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
kongxiangjiu应助科研通管家采纳,获得20
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
kongxiangjiu应助科研通管家采纳,获得20
1分钟前
布知道完成签到 ,获得积分10
1分钟前
DaYongDan完成签到 ,获得积分10
1分钟前
昭荃完成签到 ,获得积分10
1分钟前
只有辣椒没有油完成签到 ,获得积分10
1分钟前
1分钟前
An发布了新的文献求助10
1分钟前
Amosummer完成签到,获得积分10
1分钟前
abcdefg完成签到,获得积分10
1分钟前
Chenqzl完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
宋小七完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
LNG地下式貯槽指針(JGA指-107-19)(Recommended practice for LNG inground storage) 1000
Second Language Writing (2nd Edition) by Ken Hyland, 2019 1000
Generalized Linear Mixed Models 第二版 1000
rhetoric, logic and argumentation: a guide to student writers 1000
QMS18Ed2 | process management. 2nd ed 1000
Operative Techniques in Pediatric Orthopaedic Surgery 510
A High Efficiency Grating Coupler Based on Hybrid Si-Lithium Niobate on Insulator Platform 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2922241
求助须知:如何正确求助?哪些是违规求助? 2566244
关于积分的说明 6937626
捐赠科研通 2222271
什么是DOI,文献DOI怎么找? 1181415
版权声明 588871
科研通“疑难数据库(出版商)”最低求助积分说明 578003