生物吸附
吸附
水溶液
化学
核化学
铀
傅里叶变换红外光谱
朗缪尔
X射线光电子能谱
朗缪尔吸附模型
弗伦德利希方程
硝酸铀酰
无机化学
材料科学
有机化学
化学工程
冶金
工程类
吸附
作者
Xiaoqin Nie,Faqin Dong,Ning Liu,Dong Zhang,Mingxue Liu,Jie Yang,Wei Zhang
出处
期刊:PubMed
日期:2015-09-01
卷期号:35 (9): 2613-9
被引量:2
摘要
The biosorption and biomineralization characteristics of uranium by the duckweed Landoltia punctata was investigated in aqueous solutions enriched with 1 to 250 mg · L(-1) of U(VI) supplied as uranyl nitrate [UO2(NO3)2 · 6H2O]. The maximum uranium removal for the plant cultivar occurred at pH 4~5 of solution and their uranium removal efficiencies exceeded 90% after 24 h. In kinetics studies, the dried powder of duckweed can finished nearly 80% adsorption within 5 min, the batch adsorption equilibrium can be reached within 24 h for the living and dried powder of duckweed, Both for the living and dried powder of duckweed, the experimental data were well fitted by the pseudo-second-order rate model with the degree of fitting (r) higher than 0.99. The adsorption isotherms could be better described by the Freundlich model than the Langmuir model. In addition, Fourier transform infrared spectroscopy (FTIR) revealed that the surface of Landoltia punctata possess many active groups such as hydroxyl, carboxyl, phosphate and amide groups, the hydroxyl, amino groups involved in adsorption of U(VI) by living and dried powder of Landoltia punctata, and the phosphate groups also participated in the adsorption behavior of U(VI) by the living Landoltia punctata. The living Landoltia punctata reduction part of U(VI) to U(IV) was observed by XPS analysis. SEM and energy dispersive X-ray spectroscopy (EDS) of duckweed from 10~200 mg · L(-1) uranium treatments indeed showed root surface of living Landoltia punctata formed a significant portion of U precipitates with nanometer sized schistose structures that consisted primarily U and P, not containing C. Inorganic phosphate was released by the root cells of Landoltia punctata during the experiments providing ligands for formation of insoluble U(VI) and U(IV) phosphates. The distinct uranium peaks in the EDS spectra of the cluster on the root surface can be observed after biosorption and the uranium and phosphorus mass ratio of the cluster spot was measured to be 82.5% and 8.76% of the total component weight, respectively, and the atomic percentage of 30.89% and 25.19%, respectively. It is worth noting that the phosphorus mass ratio and the atomic rate of the control group is only 0.24% and 0.11%, respectively. But there was no similar crystals observed on the surface of dried powder of Landoltia punctata after biosorption. The present work suggests that living and dried powder of Landoltia punctata can remove more than 90% U(VI) from solution simultaneously precipitated together with phosphate by the living Landoltia punctata, and the dried powder of Landoltia punctata adsorption U(VI) is mainly through the effect of electrostatic attraction, ion exchange and complexation coordination, etc. Here, for the first time, the presence of U immobilization mechanisms within one aquatic plant is reported using Landoltia punctata.
科研通智能强力驱动
Strongly Powered by AbleSci AI