Accelerating Large-Scale Multiobjective Optimization via Problem Reformulation

多目标优化 数学优化 维数之咒 进化算法 最优化问题 帕累托原理 比例(比率) 集合(抽象数据类型) 数学 计算机科学 人工智能 量子力学 物理 程序设计语言
作者
Cheng He,Lianghao Li,Ye Tian,Xingyi Zhang,Ran Cheng,Yaochu Jin,Xin Yao
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 949-961 被引量:247
标识
DOI:10.1109/tevc.2019.2896002
摘要

In this paper, we propose a framework to accelerate the computational efficiency of evolutionary algorithms on large-scale multiobjective optimization. The main idea is to track the Pareto optimal set (PS) directly via problem reformulation. To begin with, the algorithm obtains a set of reference directions in the decision space and associates them with a set of weight variables for locating the PS. Afterwards, the original large-scale multiobjective optimization problem is reformulated into a low-dimensional single-objective optimization problem. In the reformulated problem, the decision space is reconstructed by the weight variables and the objective space is reduced by an indicator function. Thanks to the low dimensionality of the weight variables and reduced objective space, a set of quasi-optimal solutions can be obtained efficiently. Finally, a multiobjective evolutionary algorithm is used to spread the quasi-optimal solutions over the approximate Pareto optimal front evenly. Experiments have been conducted on a variety of large-scale multiobjective problems with up to 5000 decision variables. Four different types of representative algorithms are embedded into the proposed framework and compared with their original versions, respectively. Furthermore, the proposed framework has been compared with two state-of-the-art algorithms for large-scale multiobjective optimization. The experimental results have demonstrated the significant improvement benefited from the framework in terms of its performance and computational efficiency in large-scale multiobjective optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Noneone110发布了新的文献求助10
刚刚
刚刚
激昂的甜瓜完成签到,获得积分20
1秒前
暮光之城发布了新的文献求助10
1秒前
2秒前
2秒前
xyy9919完成签到,获得积分10
2秒前
3秒前
4秒前
haofan17完成签到,获得积分10
6秒前
7秒前
记录后果发布了新的文献求助10
7秒前
hjy完成签到,获得积分10
7秒前
施含莲发布了新的文献求助10
7秒前
8秒前
马尔风发布了新的文献求助10
9秒前
ardejiang发布了新的文献求助10
9秒前
DIDIDA发布了新的文献求助10
9秒前
勤恳的月饼完成签到,获得积分20
10秒前
斯文败类应助李李原上草采纳,获得10
11秒前
许情发布了新的文献求助10
12秒前
复杂的水彤完成签到,获得积分10
12秒前
13秒前
13秒前
充电宝应助复杂的水彤采纳,获得10
16秒前
16秒前
17秒前
17秒前
神勇新竹完成签到,获得积分20
17秒前
杳鸢应助shandy采纳,获得20
18秒前
DIDIDA完成签到,获得积分10
18秒前
19秒前
左劼良完成签到,获得积分20
19秒前
19秒前
神勇新竹发布了新的文献求助10
21秒前
21秒前
keyan学渣发布了新的文献求助10
21秒前
Owen应助可爱的小树苗采纳,获得10
21秒前
李爱国应助洪山老狗采纳,获得10
22秒前
施不评完成签到,获得积分10
22秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
SAS, Python and R: A Cross-Reference Guide for Data Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3385997
求助须知:如何正确求助?哪些是违规求助? 2999290
关于积分的说明 8784466
捐赠科研通 2685022
什么是DOI,文献DOI怎么找? 1470768
科研通“疑难数据库(出版商)”最低求助积分说明 679950
邀请新用户注册赠送积分活动 672456