材料科学
荧光
量子点
荧光寿命成像显微镜
近红外光谱
显像剂
生物医学中的光声成像
摩尔吸收率
体内
纳米技术
光学
生物
物理
生物技术
作者
Zonghai Sheng,Bing Guo,Dehong Hu,Shidang Xu,Wenbo Wu,Weng Heng Liew,Kui Yao,Jingying Jiang,Chengbo Liu,Hairong Zheng,Bin Liu
标识
DOI:10.1002/adma.201800766
摘要
Abstract Precise diagnostics are of significant importance to the optimal treatment outcomes of patients bearing brain tumors. NIR‐II fluorescence imaging holds great promise for brain‐tumor diagnostics with deep penetration and high sensitivity. This requires the development of organic NIR‐II fluorescent agents with high quantum yield (QY), which is difficult to achieve. Herein, the design and synthesis of a new NIR‐II fluorescent molecule with aggregation‐induced‐emission (AIE) characteristics is reported for orthotopic brain‐tumor imaging. Encapsulation of the molecule in a polymer matrix yields AIE dots showing a very high QY of 6.2% with a large absorptivity of 10.2 L g −1 cm −1 at 740 nm and an emission maximum near 1000 nm. Further decoration of the AIE dots with c‐RGD yields targeted AIE dots, which afford specific and selective tumor uptake, with a high signal/background ratio of 4.4 and resolution up to 38 µm. The large NIR absorptivity of the AIE dots facilitates NIR‐I photoacoustic imaging with intrinsically deeper penetration than NIR‐II fluorescence imaging and, more importantly, precise tumor‐depth detection through intact scalp and skull. This research demonstrates the promise of NIR‐II AIE molecules and their dots in dual NIR‐II fluorescence and NIR‐I photoacoustic imaging for precise brain cancer diagnostics.
科研通智能强力驱动
Strongly Powered by AbleSci AI