已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning in Seismology: Turning Data into Insights

国家实验室 图书馆学 艺术史 历史 地质学 工程类 计算机科学 工程物理
作者
Qingkai Kong,Daniel T. Trugman,Zachary E. Ross,Michael J. Bianco,Brendan J. Meade,Peter Gerstoft
出处
期刊:Seismological Research Letters [Seismological Society]
卷期号:90 (1): 3-14 被引量:320
标识
DOI:10.1785/0220180259
摘要

Review Article| November 14, 2018 Machine Learning in Seismology: Turning Data into Insights Qingkai Kong; Qingkai Kong aBerkeley Seismological Laboratory, University of California, Berkeley, 209 McCone Hall, Berkeley, California 94720 U.S.A., kongqk@berkeley.edu Search for other works by this author on: GSW Google Scholar Daniel T. Trugman; Daniel T. Trugman bLos Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 U.S.A. Search for other works by this author on: GSW Google Scholar Zachary E. Ross; Zachary E. Ross cSeismological Laboratory, California Institute of Technology, Pasadena, California 91125 U.S.A. Search for other works by this author on: GSW Google Scholar Michael J. Bianco; Michael J. Bianco dScripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093‐0238 U.S.A. Search for other works by this author on: GSW Google Scholar Brendan J. Meade; Brendan J. Meade eDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138 U.S.A. Search for other works by this author on: GSW Google Scholar Peter Gerstoft Peter Gerstoft dScripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093‐0238 U.S.A. Search for other works by this author on: GSW Google Scholar Author and Article Information Qingkai Kong aBerkeley Seismological Laboratory, University of California, Berkeley, 209 McCone Hall, Berkeley, California 94720 U.S.A., kongqk@berkeley.edu Daniel T. Trugman bLos Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 U.S.A. Zachary E. Ross cSeismological Laboratory, California Institute of Technology, Pasadena, California 91125 U.S.A. Michael J. Bianco dScripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093‐0238 U.S.A. Brendan J. Meade eDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138 U.S.A. Peter Gerstoft dScripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093‐0238 U.S.A. Publisher: Seismological Society of America First Online: 14 Nov 2018 Online Issn: 1938-2057 Print Issn: 0895-0695 © Seismological Society of America Seismological Research Letters (2019) 90 (1): 3–14. https://doi.org/10.1785/0220180259 Article history First Online: 14 Nov 2018 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Qingkai Kong, Daniel T. Trugman, Zachary E. Ross, Michael J. Bianco, Brendan J. Meade, Peter Gerstoft; Machine Learning in Seismology: Turning Data into Insights. Seismological Research Letters 2018;; 90 (1): 3–14. doi: https://doi.org/10.1785/0220180259 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietySeismological Research Letters Search Advanced Search ABSTRACT This article provides an overview of current applications of machine learning (ML) in seismology. ML techniques are becoming increasingly widespread in seismology, with applications ranging from identifying unseen signals and patterns to extracting features that might improve our physical understanding. The survey of the applications in seismology presented here serves as a catalyst for further use of ML. Five research areas in seismology are surveyed in which ML classification, regression, clustering algorithms show promise: earthquake detection and phase picking, earthquake early warning (EEW), ground‐motion prediction, seismic tomography, and earthquake geodesy. We conclude by discussing the need for a hybrid approach combining data‐driven ML with traditional physical modeling. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛洁洁完成签到 ,获得积分10
3秒前
清水发布了新的文献求助10
3秒前
5秒前
MDZZZZZ发布了新的文献求助30
8秒前
11秒前
ding应助小郭采纳,获得10
12秒前
13秒前
蓝色条纹衫完成签到 ,获得积分10
18秒前
Kevin完成签到,获得积分10
18秒前
fryeia发布了新的文献求助10
18秒前
25秒前
FERN0826完成签到 ,获得积分10
32秒前
无情的菲鹰完成签到 ,获得积分10
37秒前
37秒前
乐观松思发布了新的文献求助10
42秒前
47秒前
49秒前
50秒前
51秒前
LRxxx完成签到 ,获得积分10
52秒前
乐观松思完成签到,获得积分10
59秒前
stop here完成签到,获得积分10
1分钟前
二掌柜的完成签到,获得积分10
1分钟前
1分钟前
1分钟前
不知名混子完成签到 ,获得积分10
1分钟前
点心完成签到,获得积分10
1分钟前
zy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
可爱的函函应助小郭采纳,获得10
1分钟前
fryeia完成签到,获得积分10
1分钟前
geejee完成签到,获得积分10
1分钟前
Hubery完成签到 ,获得积分10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
平常的羊完成签到 ,获得积分10
1分钟前
烟花应助清水采纳,获得10
1分钟前
自然元风完成签到,获得积分10
1分钟前
wanci应助lanxinyue采纳,获得10
1分钟前
ZJ完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379057
求助须知:如何正确求助?哪些是违规求助? 2994543
关于积分的说明 8759649
捐赠科研通 2679076
什么是DOI,文献DOI怎么找? 1467485
科研通“疑难数据库(出版商)”最低求助积分说明 678691
邀请新用户注册赠送积分活动 670381