Surface Engineering of a LiMn2O4 Electrode Using Nanoscale Polymer Thin Films via Chemical Vapor Deposition Polymerization

材料科学 佩多:嘘 X射线光电子能谱 化学工程 薄膜 化学气相沉积 电极 聚合物 电解质 聚合 涂层 溶解 导电聚合物 纳米技术 复合材料 物理化学 化学 工程类
作者
Laisuo Su,Phil M. Smith,Priyanka Anand,B. Reeja‐Jayan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:10 (32): 27063-27073 被引量:47
标识
DOI:10.1021/acsami.8b08711
摘要

Surface engineering is a critical technique for improving the performance of lithium-ion batteries (LIBs). Here, we introduce a novel vapor-based technique, namely, chemical vapor deposition polymerization, that can engineer nanoscale polymer thin films with controllable thickness and composition on the surface of battery electrodes. This technique enables us to, for the first time, systematically compare the effects of a conducting poly(3,4-ethylenedioxythiophene) (PEDOT) polymer and an insulating poly(divinylbenzene) (PDVB) polymer on the performance of a LiMn2O4 electrode in LIBs. Our results show that conducting PEDOT coatings improve both the rate and the cycling performance of LiMn2O4 electrodes, whereas insulating PDVB coatings have little effect on these performances. The PEDOT coating increases 10 C rate capacity by 83% at 25 °C (from 23 to 42 mA h/g) and by 30% at 50 °C (from 64 to 83 mA h/g). Furthermore, the PEDOT coating extends the high-temperature (50 °C) cycling life of LiMn2O4 by over 60%. A model is developed, which can precisely describe the capacity degradation exhibited by the different types of cells, based on the aging mechanisms of Mn dissolution and solid-electrolyte interphase growth. Results from X-ray photoelectron spectroscopy suggest that chemical or coordination bonds form between Mn in LiMn2O4 and O and S in the PEDOT film. These bonds stabilize the surface of LiMn2O4 and thus improve the cycling performance. In contrast, no bonds form between Mn and the elements in the PDVB film. We further demonstrate that this vapor-based technique can be extended to other cathodes for advanced LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyt完成签到,获得积分10
1秒前
万灵竹发布了新的文献求助10
2秒前
高大的曼寒完成签到,获得积分10
2秒前
2秒前
吃货葭完成签到,获得积分10
2秒前
Daheitao应助怕孤独的青柏采纳,获得10
2秒前
janezyt完成签到,获得积分10
2秒前
bkagyin应助yvxi采纳,获得10
3秒前
天天快乐应助许容采纳,获得10
3秒前
4秒前
4秒前
寻觅驳回了Hello应助
4秒前
4秒前
Owen应助兴奋寄容采纳,获得10
4秒前
吃花生酱的猫应助Jinna706采纳,获得20
4秒前
Lrd完成签到,获得积分20
5秒前
6秒前
王欣瑶完成签到 ,获得积分10
7秒前
7秒前
7秒前
船船发布了新的文献求助10
8秒前
爆米花应助科研小陈采纳,获得10
8秒前
kkkkkkkkkkey完成签到,获得积分10
8秒前
忧郁若菱发布了新的文献求助10
10秒前
10秒前
一一应助zhb采纳,获得10
10秒前
meikoo发布了新的文献求助10
11秒前
傲娇的凡旋应助英勇思烟采纳,获得10
11秒前
11秒前
12秒前
船船完成签到,获得积分10
12秒前
谷雨完成签到,获得积分20
12秒前
Lrd发布了新的文献求助10
13秒前
百川发布了新的文献求助10
13秒前
14秒前
躺平的师兄完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
机灵的听荷完成签到,获得积分10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476698
求助须知:如何正确求助?哪些是违规求助? 3068270
关于积分的说明 9107322
捐赠科研通 2759775
什么是DOI,文献DOI怎么找? 1514279
邀请新用户注册赠送积分活动 700142
科研通“疑难数据库(出版商)”最低求助积分说明 699329