Discriminative Metric Learning for Partial Label Learning

判别式 人工智能 计算机科学 公制(单位) 机器学习 特征(语言学) 模棱两可 迭代学习控制 基本事实 模式识别(心理学) 集合(抽象数据类型) 哲学 经济 程序设计语言 控制(管理) 语言学 运营管理
作者
Xiuwen Gong,Dong Yuan,Wei Bao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 4428-4439 被引量:5
标识
DOI:10.1109/tnnls.2021.3118362
摘要

One simple strategy to deal with ambiguity in partial label learning (PLL) is to regard all candidate labels equally as the ground-truth label, and then solve the PLL problem using existing multiclass classification algorithms. However, due to the noisy false-positive labels in the candidate set, these approaches are readily mislead and do not generalize well in testing. Consequently, the method of identifying the ground-truth label straight from the candidate label set has grown popular and effective. When the labeling information in PLL is ambiguous, we ought to take advantage of the data's underlying structure, such as label and feature interdependencies, to conduct disambiguation. Furthermore, while metric learning is an excellent method for supervised learning classification that takes feature and label interdependencies into account, it cannot be used to solve the weekly supervised learning PLL problem directly due to the ambiguity of labeling information in the candidate label set. In this article, we propose an effective PLL paradigm called discriminative metric learning for partial label learning (DML-PLL), which aims to learn a Mahanalobis distance metric discriminatively while identifying the ground-truth label iteratively for PLL. We also design an efficient algorithm to alternatively optimize the metric parameter and the latent ground-truth label in an iterative way. Besides, we prove the convergence of the designed algorithms by two proposed lemmas. We additionally study the computational complexity of the proposed DML-PLL in terms of training and testing time for each iteration. Extensive experiments on both controlled UCI datasets and real-world PLL datasets from diverse domains demonstrate that the proposed DML-PLL regularly outperforms the compared approaches in terms of prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助小鱼采纳,获得10
1秒前
rym完成签到 ,获得积分10
1秒前
1秒前
2秒前
honphyjiang发布了新的文献求助10
2秒前
liudw完成签到,获得积分10
3秒前
哭泣雅绿完成签到,获得积分20
4秒前
6秒前
xianxian发布了新的文献求助10
6秒前
hx发布了新的文献求助10
6秒前
8秒前
8秒前
何火火发布了新的文献求助10
8秒前
霸气安筠发布了新的文献求助10
9秒前
就叫希望吧完成签到 ,获得积分10
10秒前
bkagyin应助发嗲的凡蕾采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
JHGG应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
Billy应助科研通管家采纳,获得30
12秒前
大个应助科研通管家采纳,获得10
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
模糊中正应助科研通管家采纳,获得20
12秒前
12秒前
愉快问枫应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
时迁发布了新的文献求助10
12秒前
lhr完成签到 ,获得积分10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
13秒前
honphyjiang完成签到,获得积分10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266963
求助须知:如何正确求助?哪些是违规求助? 2906569
关于积分的说明 8338470
捐赠科研通 2577035
什么是DOI,文献DOI怎么找? 1400745
科研通“疑难数据库(出版商)”最低求助积分说明 654947
邀请新用户注册赠送积分活动 633853