Defect engineering induced heterostructure of Zn-birnessite@spinel ZnMn2O4 nanocrystal for flexible asymmetric supercapacitor

异质结 材料科学 超级电容器 纳米晶 氧化还原 电化学 双锰矿 化学工程 尖晶石 阳极 电容 纳米技术 电极 氧化物 化学 光电子学 冶金 物理化学 工程类 氧化锰
作者
Lulu Lyu,Chae Won Kim,Kwang‐dong Seong,Jeongmin Kang,Shude Liu,Yusuke Yamauchi,Yuanzhe Piao
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:430: 133115-133115 被引量:44
标识
DOI:10.1016/j.cej.2021.133115
摘要

Defect engineering holds great promise to boost surface charge redox chemistry of pseudocapacitive materials. However, their innovative development on the heterogeneous structure is still lacking. Herein, defect-rich heterogeneous Zn-birnessite [email protected] ZnMn2O4 nanocrystal composites are designed via an in situ chemical reduction route at a low temperature. We explore the formation mechanism that the generated oxygen vacancy (Vo) in the Zn-birnessite triggers Mn cation migration, leading to birnessite-to-spinel phase transition. The defect-rich heterostructure supplies rich Mn2+/3+/4+ redox couples, multiple electrochemically active sites, and shortened ion-transport pathways. Moreover, the bandgap of the heterostructure is reduced from 1.54 eV to 1.06 eV after introducing Vo, which promotes electron transport and thus bolsters fast redox reaction kinetics. Accordingly, the heterostructure delivers a large areal capacitance of 1903 mF cm−2 at 3 mA cm−2 at a wide potential window of 1.2 V, high rate performance, and long cycle life (93.7% capacitance retention over 16,000 cycles). An asymmetric supercapacitor employing the heterostructure as a cathode and vanadium oxide as an anode exhibits a high voltage of 2.4 V, and possesses a maximum energy density of 6.24 mWh cm−3. This research offers a promising avenue to tailor the electrochemical reactivity of heterostructures through defect engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石会发发布了新的文献求助10
1秒前
飞快的从丹完成签到,获得积分10
2秒前
2秒前
3秒前
5秒前
hahahaha发布了新的文献求助10
8秒前
ak24765发布了新的文献求助10
9秒前
11秒前
的荟完成签到,获得积分10
12秒前
大模型应助无钱采纳,获得10
12秒前
12秒前
13秒前
gky完成签到,获得积分10
13秒前
14秒前
丽娜发布了新的文献求助10
15秒前
15秒前
lyw完成签到 ,获得积分10
16秒前
16秒前
16秒前
思源应助Shi采纳,获得10
16秒前
的荟发布了新的文献求助10
17秒前
Plucky完成签到,获得积分10
17秒前
滚滚完成签到,获得积分10
17秒前
大模型应助淡淡的南风采纳,获得10
18秒前
18秒前
星辰大海应助书晨采纳,获得10
18秒前
Yao发布了新的文献求助30
19秒前
二十七完成签到 ,获得积分10
19秒前
GAOBIN000发布了新的文献求助10
20秒前
腼腆的恶天完成签到,获得积分10
21秒前
科研通AI5应助qq采纳,获得10
21秒前
李爱国应助deway采纳,获得10
21秒前
21秒前
21秒前
holmes发布了新的文献求助10
22秒前
小李发布了新的文献求助10
22秒前
22秒前
有氧呼吸发布了新的文献求助10
23秒前
善莫大焉完成签到,获得积分20
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911665
求助须知:如何正确求助?哪些是违规求助? 4187116
关于积分的说明 13002794
捐赠科研通 3954954
什么是DOI,文献DOI怎么找? 2168516
邀请新用户注册赠送积分活动 1186997
关于科研通互助平台的介绍 1094256