Diagnosis of obsessive-compulsive disorder via spatial similarity-aware learning and fused deep polynomial network

人工智能 计算机科学 深度学习 平滑的 机器学习 维数之咒 模式识别(心理学) 正规化(语言学) 加权 相似性(几何) 图像(数学) 医学 计算机视觉 放射科
作者
Peng Yang,Cheng Zhao,Qiong Yang,Zhen Wei,Xiaohua Xiao,Li Shen,Tianfu Wang,Baiying Lei,Ziwen Peng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102244-102244 被引量:7
标识
DOI:10.1016/j.media.2021.102244
摘要

• The proposed SSL method can construct a physiologically meaningful BFCN. • The FDPN model uses different weights to fuse output features for feature learning. • A novel framework is designed to integrates deep and machine learning methods. Obsessive-compulsive disorder (OCD) is a type of hereditary mental illness, which seriously affect the normal life of the patients. Sparse learning has been widely used in detecting brain diseases objectively by removing redundant information and retaining monitor valuable biological characteristics from the brain functional connectivity network (BFCN). However, most existing methods ignore the relationship between brain regions in each subject. To solve this problem, this paper proposes a spatial similarity-aware learning (SSL) model to build BFCNs. Specifically, we embrace the spatial relationship between adjacent or bilaterally symmetric brain regions via a smoothing regularization term in the model. We develop a novel fused deep polynomial network (FDPN) model to further learn the powerful information and attempt to solve the problem of curse of dimensionality using BFCN features. In the FDPN model, we stack a multi-layer deep polynomial network (DPN) and integrate the features from multiple output layers via the weighting mechanism. In this way, the FDPN method not only can identify the high-level informative features of BFCN but also can solve the problem of curse of dimensionality. A novel framework is proposed to detect OCD and unaffected first-degree relatives (UFDRs), which combines deep learning and traditional machine learning methods. We validate our algorithm in the resting-state functional magnetic resonance imaging (rs-fMRI) dataset collected by the local hospital and achieve promising performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助Jello采纳,获得10
1秒前
我嘞个豆发布了新的文献求助10
2秒前
3秒前
5秒前
MXene完成签到 ,获得积分0
6秒前
zzyan发布了新的文献求助10
6秒前
学术laji发布了新的文献求助10
7秒前
所所应助aa采纳,获得10
7秒前
10秒前
Tao发布了新的文献求助10
10秒前
10秒前
11秒前
万安安完成签到,获得积分10
11秒前
干饭吧完成签到,获得积分10
12秒前
乐乐应助SiShi采纳,获得10
13秒前
万安安发布了新的文献求助10
14秒前
呼啦啦发布了新的文献求助10
15秒前
16秒前
jhanfglin发布了新的文献求助10
17秒前
zzyan完成签到,获得积分10
17秒前
所所应助李鱼丸采纳,获得10
17秒前
zhinian完成签到 ,获得积分10
17秒前
20秒前
momo完成签到,获得积分20
21秒前
Zcy完成签到,获得积分10
21秒前
21秒前
在水一方应助粉红小海星采纳,获得10
22秒前
深情安青应助nissy采纳,获得10
22秒前
22秒前
jhanfglin完成签到,获得积分10
23秒前
呼啦啦完成签到,获得积分10
24秒前
高不二发布了新的文献求助10
25秒前
深情安青应助YO采纳,获得10
25秒前
坦率的秋烟完成签到,获得积分10
26秒前
星辰大海应助俭朴的不可采纳,获得30
26秒前
syvshc应助111采纳,获得10
26秒前
26秒前
早睡早起发布了新的文献求助10
27秒前
27秒前
酷波er应助尊敬寒松采纳,获得10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993903
求助须知:如何正确求助?哪些是违规求助? 3534470
关于积分的说明 11265717
捐赠科研通 3274344
什么是DOI,文献DOI怎么找? 1806358
邀请新用户注册赠送积分活动 883170
科研通“疑难数据库(出版商)”最低求助积分说明 809712