亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnosis of obsessive-compulsive disorder via spatial similarity-aware learning and fused deep polynomial network

人工智能 计算机科学 深度学习 平滑的 机器学习 维数之咒 模式识别(心理学) 正规化(语言学) 加权 相似性(几何) 图像(数学) 医学 计算机视觉 放射科
作者
Peng Yang,Cheng Zhao,Qiong Yang,Zhen Wei,Xiaohua Xiao,Li Shen,Tianfu Wang,Baiying Lei,Ziwen Peng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102244-102244 被引量:8
标识
DOI:10.1016/j.media.2021.102244
摘要

• The proposed SSL method can construct a physiologically meaningful BFCN. • The FDPN model uses different weights to fuse output features for feature learning. • A novel framework is designed to integrates deep and machine learning methods. Obsessive-compulsive disorder (OCD) is a type of hereditary mental illness, which seriously affect the normal life of the patients. Sparse learning has been widely used in detecting brain diseases objectively by removing redundant information and retaining monitor valuable biological characteristics from the brain functional connectivity network (BFCN). However, most existing methods ignore the relationship between brain regions in each subject. To solve this problem, this paper proposes a spatial similarity-aware learning (SSL) model to build BFCNs. Specifically, we embrace the spatial relationship between adjacent or bilaterally symmetric brain regions via a smoothing regularization term in the model. We develop a novel fused deep polynomial network (FDPN) model to further learn the powerful information and attempt to solve the problem of curse of dimensionality using BFCN features. In the FDPN model, we stack a multi-layer deep polynomial network (DPN) and integrate the features from multiple output layers via the weighting mechanism. In this way, the FDPN method not only can identify the high-level informative features of BFCN but also can solve the problem of curse of dimensionality. A novel framework is proposed to detect OCD and unaffected first-degree relatives (UFDRs), which combines deep learning and traditional machine learning methods. We validate our algorithm in the resting-state functional magnetic resonance imaging (rs-fMRI) dataset collected by the local hospital and achieve promising performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
呼安完成签到,获得积分10
20秒前
23秒前
cheese发布了新的文献求助10
27秒前
橘橘橘子皮完成签到 ,获得积分10
32秒前
LJL完成签到 ,获得积分10
32秒前
华仔应助HXZ采纳,获得30
33秒前
SciGPT应助Aulorra采纳,获得10
36秒前
深情安青应助科研小白采纳,获得10
36秒前
研友_VZG7GZ应助谦让丹翠采纳,获得10
39秒前
歪歪yyyyc完成签到,获得积分10
40秒前
48秒前
50秒前
WerWu完成签到,获得积分0
51秒前
传奇3应助鲤鱼惮采纳,获得10
54秒前
Ava应助伊斯塔战灵采纳,获得10
55秒前
谢江洋完成签到,获得积分10
56秒前
cheese完成签到,获得积分10
56秒前
lac813发布了新的文献求助10
56秒前
58秒前
养花低手完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
lac813完成签到,获得积分10
1分钟前
科研小白发布了新的文献求助10
1分钟前
Auralis完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
小蘑菇应助火星上的山河采纳,获得10
1分钟前
球球子完成签到,获得积分10
1分钟前
1分钟前
kk完成签到,获得积分10
1分钟前
谦让丹翠发布了新的文献求助10
1分钟前
Ru完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426294
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171650
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164