Diagnosis of obsessive-compulsive disorder via spatial similarity-aware learning and fused deep polynomial network

人工智能 计算机科学 深度学习 平滑的 机器学习 维数之咒 模式识别(心理学) 正规化(语言学) 加权 相似性(几何) 图像(数学) 医学 计算机视觉 放射科
作者
Peng Yang,Cheng Zhao,Jing Wang,Zhen Wei,Xiaohua Xiao,Li Shen,Tianfu Wang,Baiying Lei,Ziwen Peng
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102244-102244 被引量:7
标识
DOI:10.1016/j.media.2021.102244
摘要

• The proposed SSL method can construct a physiologically meaningful BFCN. • The FDPN model uses different weights to fuse output features for feature learning. • A novel framework is designed to integrates deep and machine learning methods. Obsessive-compulsive disorder (OCD) is a type of hereditary mental illness, which seriously affect the normal life of the patients. Sparse learning has been widely used in detecting brain diseases objectively by removing redundant information and retaining monitor valuable biological characteristics from the brain functional connectivity network (BFCN). However, most existing methods ignore the relationship between brain regions in each subject. To solve this problem, this paper proposes a spatial similarity-aware learning (SSL) model to build BFCNs. Specifically, we embrace the spatial relationship between adjacent or bilaterally symmetric brain regions via a smoothing regularization term in the model. We develop a novel fused deep polynomial network (FDPN) model to further learn the powerful information and attempt to solve the problem of curse of dimensionality using BFCN features. In the FDPN model, we stack a multi-layer deep polynomial network (DPN) and integrate the features from multiple output layers via the weighting mechanism. In this way, the FDPN method not only can identify the high-level informative features of BFCN but also can solve the problem of curse of dimensionality. A novel framework is proposed to detect OCD and unaffected first-degree relatives (UFDRs), which combines deep learning and traditional machine learning methods. We validate our algorithm in the resting-state functional magnetic resonance imaging (rs-fMRI) dataset collected by the local hospital and achieve promising performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
och3完成签到 ,获得积分10
刚刚
1秒前
3秒前
4秒前
sykzx发布了新的文献求助30
5秒前
NexusExplorer应助上上谦采纳,获得10
6秒前
6秒前
och3发布了新的文献求助10
6秒前
话家发布了新的文献求助10
7秒前
7秒前
8秒前
yuuuue发布了新的文献求助10
8秒前
bu完成签到,获得积分10
10秒前
Alex发布了新的文献求助10
10秒前
noriZHC发布了新的文献求助10
10秒前
Long发布了新的文献求助10
11秒前
ff关注了科研通微信公众号
12秒前
tianzml0应助leyellows采纳,获得20
12秒前
彩色的灭男完成签到,获得积分20
13秒前
lili发布了新的文献求助10
14秒前
15秒前
JoJo发布了新的文献求助10
15秒前
冷傲小熊猫完成签到,获得积分10
16秒前
爆米花应助大仙采纳,获得10
16秒前
17秒前
MingqingFang发布了新的文献求助10
17秒前
17秒前
胜天半子发布了新的文献求助10
17秒前
Wuin完成签到,获得积分10
17秒前
18秒前
科研通AI2S应助小清驴采纳,获得30
18秒前
阮绿凝发布了新的文献求助10
19秒前
MMMM完成签到,获得积分10
19秒前
tt完成签到,获得积分10
20秒前
inkyxia发布了新的文献求助10
21秒前
聪明以筠发布了新的文献求助10
21秒前
wljys完成签到,获得积分10
21秒前
tt发布了新的文献求助10
23秒前
23秒前
23秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160558
求助须知:如何正确求助?哪些是违规求助? 2811730
关于积分的说明 7893251
捐赠科研通 2470605
什么是DOI,文献DOI怎么找? 1315658
科研通“疑难数据库(出版商)”最低求助积分说明 630920
版权声明 602042