材料科学
电介质
铋铁氧体
铋
钐
介电常数
电场
极化(电化学)
光电子学
铁电性
凝聚态物理
储能
多铁性
功率(物理)
热力学
物理化学
物理
无机化学
化学
冶金
量子力学
作者
Hao Pan,Shun Lan,Shiqi Xu,Qinghua Zhang,Hongbao Yao,Yiqian Liu,Fanqi Meng,Er‐Jia Guo,Lin Gu,Di Yi,Xiao Renshaw Wang,Houbing Huang,Judith L. MacManus‐Driscoll,Long‐Qing Chen,Kuijuan Jin,Ce‐Wen Nan,Yuanhua Lin
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2021-09-30
卷期号:374 (6563): 100-104
被引量:405
标识
DOI:10.1126/science.abi7687
摘要
Electrostatic energy storage technology based on dielectrics is fundamental to advanced electronics and high-power electrical systems. Recently, relaxor ferroelectrics characterized by nanodomains have shown great promise as dielectrics with high energy density and high efficiency. We demonstrate substantial enhancements of energy storage properties in relaxor ferroelectric films with a superparaelectric design. The nanodomains are scaled down to polar clusters of several unit cells so that polarization switching hysteresis is nearly eliminated while relatively high polarization is maintained. We achieve an ultrahigh energy density of 152 joules per cubic centimeter with markedly improved efficiency (>90% at an electric field of 3.5 megavolts per centimeter) in superparaelectric samarium-doped bismuth ferrite–barium titanate films. This superparaelectric strategy is generally applicable to optimize dielectric and other related functionalities of relaxor ferroelectrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI