Choosing Mutation and Crossover Ratios for Genetic Algorithms—A Review with a New Dynamic Approach

渡线 突变 遗传算法 人口 进化算法 选择(遗传算法) 计算机科学 突变率 算法 数学优化 数学 人工智能 遗传学 生物 基因 社会学 人口学
作者
Ahmad B. A. Hassanat,Khalid Almohammadi,Esra’a Alkafaween,Eman Abunawas,Awni Mansoar Hammouri,V. B. Surya Prasath
出处
期刊:Information [Multidisciplinary Digital Publishing Institute]
卷期号:10 (12): 390-390 被引量:278
标识
DOI:10.3390/info10120390
摘要

Genetic algorithm (GA) is an artificial intelligence search method that uses the process of evolution and natural selection theory and is under the umbrella of evolutionary computing algorithm. It is an efficient tool for solving optimization problems. Integration among (GA) parameters is vital for successful (GA) search. Such parameters include mutation and crossover rates in addition to population that are important issues in (GA). However, each operator of GA has a special and different influence. The impact of these factors is influenced by their probabilities; it is difficult to predefine specific ratios for each parameter, particularly, mutation and crossover operators. This paper reviews various methods for choosing mutation and crossover ratios in GAs. Next, we define new deterministic control approaches for crossover and mutation rates, namely Dynamic Decreasing of high mutation ratio/dynamic increasing of low crossover ratio (DHM/ILC), and Dynamic Increasing of Low Mutation/Dynamic Decreasing of High Crossover (ILM/DHC). The dynamic nature of the proposed methods allows the ratios of both crossover and mutation operators to be changed linearly during the search progress, where (DHM/ILC) starts with 100% ratio for mutations, and 0% for crossovers. Both mutation and crossover ratios start to decrease and increase, respectively. By the end of the search process, the ratios will be 0% for mutations and 100% for crossovers. (ILM/DHC) worked the same but the other way around. The proposed approach was compared with two parameters tuning methods (predefined), namely fifty-fifty crossover/mutation ratios, and the most common approach that uses static ratios such as (0.03) mutation rates and (0.9) crossover rates. The experiments were conducted on ten Traveling Salesman Problems (TSP). The experiments showed the effectiveness of the proposed (DHM/ILC) when dealing with small population size, while the proposed (ILM/DHC) was found to be more effective when using large population size. In fact, both proposed dynamic methods outperformed the predefined methods compared in most cases tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Molly0303完成签到,获得积分10
刚刚
123完成签到,获得积分20
1秒前
可爱的函函应助momomo采纳,获得10
1秒前
1秒前
Wangyiya发布了新的文献求助10
1秒前
2秒前
xkyasc完成签到,获得积分10
2秒前
2秒前
周舟发布了新的文献求助20
2秒前
不愿将就发布了新的文献求助10
3秒前
奋斗的科研人完成签到,获得积分20
3秒前
行走人生完成签到,获得积分10
3秒前
科研小白完成签到,获得积分10
4秒前
东方三问应助karolyn采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
清城完成签到,获得积分10
5秒前
young111发布了新的文献求助10
5秒前
科研狗发布了新的文献求助10
5秒前
5秒前
6秒前
okkk发布了新的文献求助10
6秒前
ala完成签到,获得积分10
6秒前
fengge完成签到,获得积分20
6秒前
啦啦啦发布了新的文献求助10
6秒前
李爱国应助智慧吗喽采纳,获得10
6秒前
隐形的平萱完成签到,获得积分10
7秒前
Rumble完成签到,获得积分10
7秒前
7秒前
zyc8368完成签到,获得积分10
7秒前
7秒前
7秒前
田様应助sun采纳,获得10
7秒前
救驾来迟完成签到,获得积分10
7秒前
虚幻亦竹完成签到,获得积分10
7秒前
ADAGIO发布了新的文献求助10
8秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238818
求助须知:如何正确求助?哪些是违规求助? 4406474
关于积分的说明 13714044
捐赠科研通 4274861
什么是DOI,文献DOI怎么找? 2345780
邀请新用户注册赠送积分活动 1342825
关于科研通互助平台的介绍 1300786