Choosing Mutation and Crossover Ratios for Genetic Algorithms—A Review with a New Dynamic Approach

渡线 突变 遗传算法 人口 进化算法 选择(遗传算法) 计算机科学 突变率 算法 数学优化 数学 人工智能 遗传学 生物 基因 社会学 人口学
作者
Ahmad B. A. Hassanat,Khalid Almohammadi,Esra’a Alkafaween,Eman Abunawas,Awni Mansoar Hammouri,V. B. Surya Prasath
出处
期刊:Information [MDPI AG]
卷期号:10 (12): 390-390 被引量:278
标识
DOI:10.3390/info10120390
摘要

Genetic algorithm (GA) is an artificial intelligence search method that uses the process of evolution and natural selection theory and is under the umbrella of evolutionary computing algorithm. It is an efficient tool for solving optimization problems. Integration among (GA) parameters is vital for successful (GA) search. Such parameters include mutation and crossover rates in addition to population that are important issues in (GA). However, each operator of GA has a special and different influence. The impact of these factors is influenced by their probabilities; it is difficult to predefine specific ratios for each parameter, particularly, mutation and crossover operators. This paper reviews various methods for choosing mutation and crossover ratios in GAs. Next, we define new deterministic control approaches for crossover and mutation rates, namely Dynamic Decreasing of high mutation ratio/dynamic increasing of low crossover ratio (DHM/ILC), and Dynamic Increasing of Low Mutation/Dynamic Decreasing of High Crossover (ILM/DHC). The dynamic nature of the proposed methods allows the ratios of both crossover and mutation operators to be changed linearly during the search progress, where (DHM/ILC) starts with 100% ratio for mutations, and 0% for crossovers. Both mutation and crossover ratios start to decrease and increase, respectively. By the end of the search process, the ratios will be 0% for mutations and 100% for crossovers. (ILM/DHC) worked the same but the other way around. The proposed approach was compared with two parameters tuning methods (predefined), namely fifty-fifty crossover/mutation ratios, and the most common approach that uses static ratios such as (0.03) mutation rates and (0.9) crossover rates. The experiments were conducted on ten Traveling Salesman Problems (TSP). The experiments showed the effectiveness of the proposed (DHM/ILC) when dealing with small population size, while the proposed (ILM/DHC) was found to be more effective when using large population size. In fact, both proposed dynamic methods outperformed the predefined methods compared in most cases tested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Boffican完成签到,获得积分10
1秒前
lxrsee发布了新的文献求助10
2秒前
ZFR发布了新的文献求助10
3秒前
影子完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
5秒前
Ling发布了新的文献求助20
5秒前
IAMXC发布了新的文献求助10
5秒前
平常难破完成签到,获得积分10
7秒前
五十一笑声应助云淡风清采纳,获得10
7秒前
7秒前
子苇发布了新的文献求助10
8秒前
Jenne发布了新的文献求助10
9秒前
华仔完成签到,获得积分10
9秒前
JIAca发布了新的文献求助20
10秒前
清和漾发布了新的文献求助30
10秒前
叶95完成签到,获得积分10
10秒前
无风发布了新的文献求助10
11秒前
小萝卜完成签到,获得积分10
11秒前
天天快乐应助咕咕咕采纳,获得10
11秒前
11秒前
窦誉应助满姣采纳,获得20
12秒前
田様应助满姣采纳,获得10
12秒前
Lucas应助满姣采纳,获得10
12秒前
思源应助满姣采纳,获得10
12秒前
orixero应助满姣采纳,获得10
12秒前
Owen应助满姣采纳,获得10
12秒前
lxrsee完成签到,获得积分10
12秒前
12秒前
善学以致用应助影子采纳,获得10
12秒前
慕青应助学术屎壳郎采纳,获得10
13秒前
微笑的靖易完成签到,获得积分10
13秒前
追寻紫安发布了新的文献求助10
13秒前
丘比特应助hjs888采纳,获得10
14秒前
mxy完成签到,获得积分10
14秒前
喝一口奶茶完成签到,获得积分20
14秒前
15秒前
大橙子给连安阳的求助进行了留言
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144663
求助须知:如何正确求助?哪些是违规求助? 2796129
关于积分的说明 7818009
捐赠科研通 2452286
什么是DOI,文献DOI怎么找? 1304935
科研通“疑难数据库(出版商)”最低求助积分说明 627339
版权声明 601432