昼夜垂直迁移
地下水位
地下水
基岩
水文学(农业)
地质学
蒸散量
地下水流
地下水流
导水率
含水层
环境科学
土壤科学
土壤水分
地貌学
生态学
岩土工程
海洋学
生物
作者
R. E. Harmon,Holly Barnard,Kamini Singha
摘要
Abstract The subsurface processes that mediate the connection between evapotranspiration and groundwater within forested hillslopes are poorly defined. Here, we investigate the origin of diel signals in unsaturated soil water, groundwater, and stream stage on three forested hillslopes in the H.J. Andrews Experimental Forest in western Oregon, USA, during the summer of 2017, and assess how the diurnal signal in evapotranspiration (ET) is transferred through the hillslope and into these stores. There was no evidence of diel fluctuations in upslope groundwater wells, suggesting that tree water uptake in upslope areas does not directly contribute to the diel signal observed in near‐stream groundwater and streamflow. The water table in upslope areas resided within largely consolidated bedrock, which was overlain by highly fractured unsaturated bedrock. These subsurface characteristics inhibited formation of diel signals in groundwater and impeded the transfer of diel signals in soil moisture to groundwater because (1) the bedrock where the water table resides limited root penetration and (2) the low unsaturated hydraulic conductivity of the highly fractured rock weakened the hydraulic connection between groundwater and soil/rock moisture. Transpiration‐driven diel fluctuations in groundwater were limited to near‐stream areas but were not ubiquitous in space and time. The depth to the groundwater table and the geologic structure at that depth likely dictated rooting depth and thus controlled where and when the transpiration‐driven diel fluctuations were apparent in riparian groundwater. This study outlines the role of hillslope hydrogeology and its influence on the translation of evapotranspiration and soil moisture fluctuations to groundwater and stream fluctuations.
科研通智能强力驱动
Strongly Powered by AbleSci AI