已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A scalable SCENIC workflow for single-cell gene regulatory network analysis

调节器 工作流程 计算生物学 可扩展性 计算机科学 基因 数据挖掘 生物 转录因子 遗传学 数据库
作者
Bram Van de Sande,Christopher Flerin,Kristofer Davie,Maxime De Waegeneer,Gert Hulselmans,Sara Aibar,Ruth Seurinck,Wouter Saelens,Robrecht Cannoodt,Quentin Rouchon,Toni Verbeiren,Dries De Maeyer,Joke Reumers,Yvan Saeys,Stein Aerts
出处
期刊:Nature Protocols [Springer Nature]
卷期号:15 (7): 2247-2276 被引量:1383
标识
DOI:10.1038/s41596-020-0336-2
摘要

This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e., transcription factors and their target genes) assesses the activity of these discovered regulons in individual cells and uses these cellular activity patterns to find meaningful clusters of cells. Here we present an improved version of SCENIC with several advances. SCENIC has been refactored and reimplemented in Python (pySCENIC), resulting in a tenfold increase in speed, and has been packaged into containers for ease of use. It is now also possible to use epigenomic track databases, as well as motifs, to refine regulons. In this protocol, we explain the different steps of SCENIC: the workflow starts from the count matrix depicting the gene abundances for all cells and consists of three stages. First, coexpression modules are inferred using a regression per-target approach (GRNBoost2). Next, the indirect targets are pruned from these modules using cis-regulatory motif discovery (cisTarget). Lastly, the activity of these regulons is quantified via an enrichment score for the regulon’s target genes (AUCell). Nonlinear projection methods can be used to display visual groupings of cells based on the cellular activity patterns of these regulons. The results can be exported as a loom file and visualized in the SCope web application. This protocol is illustrated on two use cases: a peripheral blood mononuclear cell data set and a panel of single-cell RNA-sequencing cancer experiments. For a data set of 10,000 genes and 50,000 cells, the pipeline runs in <2 h. SCENIC is a computational pipeline to predict cell-type-specific transcription factors through network inference and motif enrichment. Here the authors describe a detailed protocol for pySCENIC: a faster, container-based implementation in Python.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ztl完成签到 ,获得积分10
刚刚
归海梦岚完成签到,获得积分0
1秒前
1秒前
Shmilykk完成签到,获得积分10
1秒前
1秒前
万能图书馆应助Breeze采纳,获得10
2秒前
5秒前
谷粱安卉完成签到 ,获得积分10
5秒前
在水一方应助Breeze采纳,获得10
7秒前
CodeCraft应助Bailey采纳,获得10
10秒前
12秒前
xinlixi完成签到,获得积分0
12秒前
五十完成签到 ,获得积分10
12秒前
13秒前
15秒前
坦率完成签到,获得积分10
15秒前
16秒前
16秒前
xiaohan,JIA完成签到,获得积分10
17秒前
麻辣香锅发布了新的文献求助10
18秒前
搞怪的豪发布了新的文献求助50
18秒前
qq完成签到 ,获得积分10
19秒前
摩羯发布了新的文献求助20
20秒前
上官若男应助微光熠采纳,获得10
21秒前
Bailey发布了新的文献求助10
22秒前
23秒前
Jemma发布了新的文献求助10
23秒前
哑舍完成签到,获得积分10
25秒前
27秒前
长情无心完成签到,获得积分10
28秒前
蒋灵馨完成签到 ,获得积分10
28秒前
是阿瑾呀完成签到 ,获得积分10
28秒前
29秒前
30秒前
季刘杰完成签到 ,获得积分10
31秒前
学习发布了新的文献求助10
32秒前
Live应助LAN采纳,获得10
32秒前
傲娇的凛发布了新的文献求助10
33秒前
高高的镜子完成签到,获得积分10
36秒前
炙热的桐完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650260
求助须知:如何正确求助?哪些是违规求助? 4780326
关于积分的说明 15051616
捐赠科研通 4809184
什么是DOI,文献DOI怎么找? 2572075
邀请新用户注册赠送积分活动 1528266
关于科研通互助平台的介绍 1487102