A scalable SCENIC workflow for single-cell gene regulatory network analysis

调节器 工作流程 计算生物学 可扩展性 计算机科学 基因 数据挖掘 生物 转录因子 遗传学 数据库
作者
Bram Van de Sande,Christopher Flerin,Kristofer Davie,Maxime De Waegeneer,Gert Hulselmans,Sara Aibar,Ruth Seurinck,Wouter Saelens,Robrecht Cannoodt,Quentin Rouchon,Toni Verbeiren,Dries De Maeyer,Joke Reumers,Yvan Saeys,Stein Aerts
出处
期刊:Nature Protocols [Springer Nature]
卷期号:15 (7): 2247-2276 被引量:1334
标识
DOI:10.1038/s41596-020-0336-2
摘要

This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e., transcription factors and their target genes) assesses the activity of these discovered regulons in individual cells and uses these cellular activity patterns to find meaningful clusters of cells. Here we present an improved version of SCENIC with several advances. SCENIC has been refactored and reimplemented in Python (pySCENIC), resulting in a tenfold increase in speed, and has been packaged into containers for ease of use. It is now also possible to use epigenomic track databases, as well as motifs, to refine regulons. In this protocol, we explain the different steps of SCENIC: the workflow starts from the count matrix depicting the gene abundances for all cells and consists of three stages. First, coexpression modules are inferred using a regression per-target approach (GRNBoost2). Next, the indirect targets are pruned from these modules using cis-regulatory motif discovery (cisTarget). Lastly, the activity of these regulons is quantified via an enrichment score for the regulon’s target genes (AUCell). Nonlinear projection methods can be used to display visual groupings of cells based on the cellular activity patterns of these regulons. The results can be exported as a loom file and visualized in the SCope web application. This protocol is illustrated on two use cases: a peripheral blood mononuclear cell data set and a panel of single-cell RNA-sequencing cancer experiments. For a data set of 10,000 genes and 50,000 cells, the pipeline runs in <2 h. SCENIC is a computational pipeline to predict cell-type-specific transcription factors through network inference and motif enrichment. Here the authors describe a detailed protocol for pySCENIC: a faster, container-based implementation in Python.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
指哪打哪发布了新的文献求助10
刚刚
刚刚
VV发布了新的文献求助30
刚刚
刚刚
1秒前
大个应助wzm采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
瑶瑶完成签到,获得积分10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
1111应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
1111应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
雨中小王应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
nn应助科研通管家采纳,获得10
5秒前
5秒前
nn应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得20
5秒前
5秒前
beichuanheqi发布了新的文献求助10
5秒前
jjyna发布了新的文献求助10
6秒前
Go发布了新的文献求助10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514