A scalable SCENIC workflow for single-cell gene regulatory network analysis

调节器 工作流程 计算生物学 可扩展性 计算机科学 基因 数据挖掘 生物 转录因子 遗传学 数据库
作者
Bram Van de Sande,Christopher Flerin,Kristofer Davie,Maxime De Waegeneer,Gert Hulselmans,Sara Aibar,Ruth Seurinck,Wouter Saelens,Robrecht Cannoodt,Quentin Rouchon,Toni Verbeiren,Dries De Maeyer,Joke Reumers,Yvan Saeys,Stein Aerts
出处
期刊:Nature Protocols [Springer Nature]
卷期号:15 (7): 2247-2276 被引量:729
标识
DOI:10.1038/s41596-020-0336-2
摘要

This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e., transcription factors and their target genes) assesses the activity of these discovered regulons in individual cells and uses these cellular activity patterns to find meaningful clusters of cells. Here we present an improved version of SCENIC with several advances. SCENIC has been refactored and reimplemented in Python (pySCENIC), resulting in a tenfold increase in speed, and has been packaged into containers for ease of use. It is now also possible to use epigenomic track databases, as well as motifs, to refine regulons. In this protocol, we explain the different steps of SCENIC: the workflow starts from the count matrix depicting the gene abundances for all cells and consists of three stages. First, coexpression modules are inferred using a regression per-target approach (GRNBoost2). Next, the indirect targets are pruned from these modules using cis-regulatory motif discovery (cisTarget). Lastly, the activity of these regulons is quantified via an enrichment score for the regulon’s target genes (AUCell). Nonlinear projection methods can be used to display visual groupings of cells based on the cellular activity patterns of these regulons. The results can be exported as a loom file and visualized in the SCope web application. This protocol is illustrated on two use cases: a peripheral blood mononuclear cell data set and a panel of single-cell RNA-sequencing cancer experiments. For a data set of 10,000 genes and 50,000 cells, the pipeline runs in <2 h. SCENIC is a computational pipeline to predict cell-type-specific transcription factors through network inference and motif enrichment. Here the authors describe a detailed protocol for pySCENIC: a faster, container-based implementation in Python.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lalala发布了新的文献求助10
1秒前
科目三应助萧水白采纳,获得100
3秒前
wuzeji发布了新的文献求助10
3秒前
鬼鬼的眼睛完成签到,获得积分10
5秒前
tttrco完成签到,获得积分10
5秒前
脑洞疼应助默默冬瓜采纳,获得10
7秒前
7秒前
7秒前
顾兰发布了新的文献求助10
7秒前
85WQQn完成签到,获得积分10
8秒前
bkagyin应助changnan采纳,获得10
9秒前
wuzeji完成签到,获得积分10
9秒前
李志伟完成签到,获得积分10
10秒前
内向友桃完成签到 ,获得积分10
10秒前
司空绝山完成签到,获得积分10
11秒前
风秋千发布了新的文献求助10
12秒前
14秒前
14秒前
Heaven完成签到,获得积分10
15秒前
snackdragon发布了新的文献求助200
16秒前
16秒前
Joseph0209发布了新的文献求助10
17秒前
薛之谦完成签到,获得积分10
19秒前
科研通AI2S应助Heaven采纳,获得10
21秒前
天大青年发布了新的文献求助10
22秒前
26秒前
27秒前
科研通AI2S应助叫滚滚采纳,获得10
27秒前
称心采枫完成签到 ,获得积分10
28秒前
29秒前
打打应助婷婷采纳,获得10
30秒前
安然发布了新的文献求助10
30秒前
小胡发布了新的文献求助20
30秒前
特斯小子完成签到 ,获得积分10
33秒前
爆米花完成签到,获得积分10
34秒前
善学以致用应助天大青年采纳,获得10
35秒前
37秒前
Ava应助一条猫采纳,获得10
37秒前
37秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147949
求助须知:如何正确求助?哪些是违规求助? 2798959
关于积分的说明 7832858
捐赠科研通 2456063
什么是DOI,文献DOI怎么找? 1307104
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620