Unsupervised domain selective graph convolutional network for preoperative prediction of lymph node metastasis in gastric cancer

计算机科学 卷积神经网络 人工智能 分类器(UML) 模式识别(心理学) 学习迁移 特征(语言学) 图形 特征学习 语言学 理论计算机科学 哲学
作者
Yongtao Zhang,Ning Yuan,Zhiguo Zhang,Jie Du,Tianfu Wang,Bing Liu,Aocai Yang,Kuan Lv,Guolin Ma,Baiying Lei
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:79: 102467-102467 被引量:11
标识
DOI:10.1016/j.media.2022.102467
摘要

Preoperative prediction of lymph node (LN) metastasis based on computed tomography (CT) scans is an important task in gastric cancer, but few machine learning-based techniques have been proposed. While multi-center datasets increase sample size and representation ability, they suffer from inter-center heterogeneity. To tackle the above issue, we propose a novel multi-source domain adaptation framework for this diagnosis task, which not only considers domain-invariant and domain-specific features, but also achieves the imbalanced knowledge transfer and class-aware feature alignment across domains. First, we develop a 3D improved feature pyramidal network (i.e., 3D IFPN) to extract common multi-level features from the high-resolution 3D CT images, where a feature dynamic transfer (FDT) module can promote the network's ability to recognize the small target (i.e., LN). Then, we design an unsupervised domain selective graph convolutional network (i.e., UDS-GCN), which mainly includes three types of components: domain-specific feature extractor, domain selector and class-aware GCN classifier. Specifically, multiple domain-specific feature extractors are employed for learning domain-specific features from the common multi-level features generated by the 3D IFPN. A domain selector via the optimal transport (OT) theory is designed for controlling the amount of knowledge transferred from source domains to the target domain. A class-aware GCN classifier is developed to explicitly enhance/weaken the intra-class/inter-class similarity of all sample pairs across domains. To optimize UDS-GCN, the domain selector and the class-aware GCN classifier provide reliable target pseudo-labels to each other in the iterative process by collaborative learning. The extensive experiments are conducted on an in-house CT image dataset collected from four medical centers to demonstrate the efficacy of our proposed method. Experimental results verify that the proposed method boosts LN metastasis diagnosis performance and outperforms state-of-the-art methods. Our code is publically available at https://github.com/infinite-tao/LN_MSDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助sxpab采纳,获得10
1秒前
zhangfan发布了新的文献求助10
1秒前
菜籽发布了新的文献求助10
2秒前
Jasper应助zjj采纳,获得10
2秒前
游走的太阳完成签到 ,获得积分20
2秒前
默listening发布了新的文献求助10
2秒前
2秒前
小W爱吃梨完成签到,获得积分10
3秒前
LiuShenglan完成签到,获得积分10
3秒前
3秒前
调研昵称发布了新的文献求助30
4秒前
cfzy完成签到 ,获得积分10
4秒前
852应助AptRank采纳,获得10
4秒前
平淡冬亦发布了新的文献求助10
4秒前
暖暖完成签到,获得积分10
4秒前
刻苦的小虾米完成签到 ,获得积分10
5秒前
科研通AI2S应助Xander采纳,获得10
5秒前
蔡宏达完成签到,获得积分20
5秒前
吴灵发布了新的文献求助10
6秒前
hkh发布了新的文献求助10
7秒前
深情安青应助monicaaaa采纳,获得10
8秒前
SciGPT应助张火火采纳,获得10
9秒前
wyz完成签到,获得积分10
9秒前
shiko完成签到,获得积分10
9秒前
星星发布了新的文献求助10
9秒前
10秒前
科研小白完成签到,获得积分10
10秒前
mark2021完成签到,获得积分10
10秒前
完美世界应助科研涛采纳,获得10
11秒前
陈坤完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
玉yu完成签到 ,获得积分10
12秒前
zxynepu关注了科研通微信公众号
13秒前
薛三金发布了新的文献求助10
13秒前
良辰应助lvjia采纳,获得10
13秒前
如意完成签到,获得积分10
14秒前
14秒前
烟花应助白潇潇采纳,获得10
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257738
求助须知:如何正确求助?哪些是违规求助? 2899561
关于积分的说明 8306743
捐赠科研通 2568802
什么是DOI,文献DOI怎么找? 1395357
科研通“疑难数据库(出版商)”最低求助积分说明 653057
邀请新用户注册赠送积分活动 630837