Silicon nanoforms in crop improvement and stress management

背景(考古学) 纳米技术 环境科学 自然资源经济学 农业 竞赛(生物学) 光合作用 材料科学 生态学 生物 植物 古生物学 经济 冶金
作者
Priyanka Dhakate,Nidhi Kandhol,Gaurav Raturi,Priyanka Ray,Anupriya Bhardwaj,Aakriti Srivastava,Laveena Kaushal,Akanksha Singh,Sangeeta Pandey,Devendra Kumar Chauhan,Nawal Kishore Dubey,Shivesh Sharma,Vijay Pratap Singh,Shivendra V. Sahi,Renato Grillo,José R. Peralta-Videa,Rupesh Deshmukh,Durgesh Kumar Tripathi
出处
期刊:Chemosphere [Elsevier]
卷期号:305: 135165-135165 被引量:29
标识
DOI:10.1016/j.chemosphere.2022.135165
摘要

Although, silicon - the second most abundant element in the earth crust could not supersede carbon (C) in the competition of being the building block of life during evolution, yet its presence has been reported in some life forms. In case of the plants, silicon has been reported widely to promote the plant growth under normal as well as stressful situations. Nanoform of silicon is now being explored for its potential to improve plant productivity and its tolerance against various stresses. Silicon nanoparticles (SiNPs) in the form of nanofertilizers, nanoherbicides, nanopesticides, nanosensors and targeted delivery systems, find great utilization in the field of agriculture. However, the mechanisms underlying their uptake by plants need to be deciphered in detail. Silicon nanoformss are reported to enhance plant growth, majorly by improving photosynthesis rate, elevating nutrient uptake and mitigating reactive oxygen species (ROS)-induced oxidative stress. Various studies have reported their ability to provide tolerance against a range of stresses by upregulating plant defense responses. Moreover, they are proclaimed not to have any detrimental impacts on environment yet. This review includes the up-to-date information in context of the eminent role of silicon nanoforms in crop improvement and stress management, supplemented with suggestions for future research in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蟹黄堡完成签到,获得积分10
刚刚
儒雅绿草完成签到,获得积分10
1秒前
1秒前
LSY完成签到 ,获得积分10
1秒前
Lemon发布了新的文献求助20
2秒前
狂野乌龟关注了科研通微信公众号
3秒前
朱朱发布了新的文献求助10
4秒前
丘比特应助崛起之邦采纳,获得10
4秒前
_好好好滴1完成签到,获得积分10
4秒前
Ksharp10完成签到,获得积分10
5秒前
kkk12245发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
8秒前
MJT10086完成签到,获得积分10
9秒前
李健的小迷弟应助噜啦啦采纳,获得10
9秒前
小马甲应助kkk12245采纳,获得10
9秒前
张张发布了新的文献求助10
10秒前
大桃发布了新的文献求助30
10秒前
11秒前
12秒前
波粒海苔发布了新的文献求助10
13秒前
科研通AI2S应助Lemon采纳,获得30
13秒前
杰杰发布了新的文献求助10
13秒前
13秒前
军伊芷兰发布了新的文献求助10
14秒前
15秒前
田田发布了新的文献求助10
15秒前
123应助minikk采纳,获得10
16秒前
16秒前
flamezzz发布了新的文献求助10
18秒前
Lemon完成签到,获得积分10
18秒前
19秒前
kkkkk46完成签到 ,获得积分10
19秒前
好嚣张完成签到 ,获得积分10
19秒前
崛起之邦发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845