InflamNat: web-based database and predictor of anti-inflammatory natural products

计算机科学 药物发现 化学信息学 数据库 化学 预测值 机器学习 数据挖掘 人工智能 生物信息学 医学 生物 内科学
作者
Ruihan Zhang,Shoupeng Ren,Qi Dai,Tian-Ze Shen,Xiaoli Li,Jin Li,Wei‐Lie Xiao
出处
期刊:Journal of Cheminformatics [Springer Nature]
卷期号:14 (1) 被引量:8
标识
DOI:10.1186/s13321-022-00608-5
摘要

Natural products (NPs) are a valuable source for anti-inflammatory drug discovery. However, they are limited by the unpredictability of the structures and functions. Therefore, computational and data-driven pre-evaluation could enable more efficient NP-inspired drug development. Since NPs possess structural features that differ from synthetic compounds, models trained with synthetic compounds may not perform well with NPs. There is also an urgent demand for well-curated databases and user-friendly predictive tools. We presented a comprehensive online web platform (InflamNat, http://www.inflamnat.com/ or http://39.104.56.4/ ) for anti-inflammatory natural product research. InflamNat is a database containing the physicochemical properties, cellular anti-inflammatory bioactivities, and molecular targets of 1351 NPs that tested on their anti-inflammatory activities. InflamNat provides two machine learning-based predictive tools specifically designed for NPs that (a) predict the anti-inflammatory activity of NPs, and (b) predict the compound-target relationship for compounds and targets collected in the database but lacking existing relationship data. A novel multi-tokenization transformer model (MTT) was proposed as the sequential encoder for both predictive tools to obtain a high-quality representation of sequential data. The experimental results showed that the proposed predictive tools achieved an AUC value of 0.842 and 0.872 in the prediction of anti-inflammatory activity and compound-target interactions, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳光以筠完成签到,获得积分20
1秒前
活泼舞蹈发布了新的文献求助10
2秒前
3秒前
上官若男应助生生不息采纳,获得10
3秒前
柿饼发布了新的文献求助10
3秒前
翊瑾发布了新的文献求助10
4秒前
迷路安雁完成签到,获得积分10
5秒前
6秒前
冰叶点点完成签到,获得积分10
7秒前
范先生发布了新的文献求助10
7秒前
柠曦完成签到,获得积分10
8秒前
10秒前
丘比特应助元水云采纳,获得30
10秒前
11秒前
LUZIYI完成签到,获得积分20
11秒前
11秒前
12秒前
华仔应助咕咕咕冒泡采纳,获得10
13秒前
13秒前
Owen应助yiyiyi采纳,获得10
13秒前
臧佳莹完成签到,获得积分20
13秒前
Ava应助有魅力的哈密瓜采纳,获得10
14秒前
15秒前
15秒前
生生不息发布了新的文献求助10
16秒前
跳跃仙人掌应助HaojunWang采纳,获得10
16秒前
SongAce完成签到,获得积分20
16秒前
18秒前
坦率若魔完成签到,获得积分10
18秒前
18秒前
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
19秒前
20秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721