Explainable AI for Software Engineering

计算机科学 软件工程 软件分析 社会软件工程 软件 软件开发 软件质量 个人软件过程 软件工程过程组 软件建设 人工智能 数据科学 程序设计语言
作者
Chakkrit Tantithamthavorn,Jirayus Jiarpakdee
标识
DOI:10.1109/ase51524.2021.9678580
摘要

The success of software engineering projects largely depends on complex decision-making. For example, which tasks should a developer do first, who should perform this task, is the software of high quality, is a software system reliable and resilient enough to deploy, etc. However, erroneous decision-making for these complex questions is costly in terms of money and reputation. Thus, Artificial Intelligence/Machine Learning (AI/ML) techniques have been widely used in software engineering for developing software analytics tools and techniques to improve decision-making, developer productivity, and software quality. However, the predictions of such AI/ML models for software engineering are still not practical (i.e., coarse-grained), not explainable, and not actionable. These concerns often hinder the adoption of AI/ML models in software engineering practices. In addition, many recent studies still focus on improving the accuracy, while a few of them focus on improving explainability. Are we moving in the right direction? How can we better improve the SE community (both research and education)?In this tutorial, we first provide a concise yet essential introduction to the most important aspects of Explainable AI and a hands-on tutorial of Explainable AI tools and techniques. Then, we introduce the fundamental knowledge of defect prediction (an example application of AI for Software Engineering). Finally, we demonstrate three successful case studies on how Explainable AI techniques can be used to address the aforementioned challenges by making the predictions of software defect prediction models more practical, explainable, and actionable. The materials are available at https://xai4se.github.io.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老肥发布了新的文献求助10
1秒前
gangstashit发布了新的文献求助10
1秒前
WOLF发布了新的文献求助10
4秒前
cc发布了新的文献求助10
4秒前
5秒前
祺王862完成签到,获得积分10
6秒前
7秒前
慕容真完成签到,获得积分10
7秒前
晨曦完成签到,获得积分10
8秒前
lfy发布了新的文献求助10
10秒前
10秒前
charcy完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
..发布了新的文献求助10
13秒前
window1000发布了新的文献求助10
16秒前
小米发布了新的文献求助10
17秒前
龙腾万里完成签到,获得积分10
17秒前
20秒前
典雅问寒应助幸福采纳,获得10
21秒前
dyuguo3完成签到 ,获得积分10
23秒前
Akim应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得30
24秒前
英姑应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
SYLH应助科研通管家采纳,获得20
24秒前
所所应助科研通管家采纳,获得10
24秒前
斯文败类应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
nv应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775727
求助须知:如何正确求助?哪些是违规求助? 3321329
关于积分的说明 10204919
捐赠科研通 3036310
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783