食品科学
抗性淀粉
化学
咀嚼度
淀粉
升糖指数
血糖指数
血糖性
生物技术
生物
胰岛素
作者
Po‐Hsien Li,Chien-Wen Wang,Wen‐Chien Lu,Yung‐Jia Chan,Chiun-Chuan Roger Wang
出处
期刊:Foods
[MDPI AG]
日期:2022-03-12
卷期号:11 (6): 814-814
被引量:17
标识
DOI:10.3390/foods11060814
摘要
The aim of this study was to evaluate the characteristics and eating quality of salted noodles that are incorporated with different formulations of flour. Up to 20% of wheat flour was substituted by composite flours of highly resistant starches, including heat moisture treatment corn starch (HMT-CS), high-amylose corn starch (Hylon VII), and green banana flour (GBF). The physical properties of dough, in conjunction with the eating quality and estimated glycemic index (EGI) of cooked salted noodles, were investigated in this study. The results concluded that the incorporation of GBF, HMT, and Hylon VII not only affected the water absorption and mixing tolerance of the dough, but also the maximum resistance to extension and extensibility in terms of the extensographic properties. Meanwhile, GBF, HMT, and Hylon VII incorporation significantly increased the resistant starch content and decreased the fat content of the noodle samples. The textural profile analyses of cooked salted noodles indicated that hardness, gumminess, chewiness, and shearing force increased; nevertheless, springiness declined with the increase in the proportion of flours from 10 to 20%. The sensory evaluation detected that wheat flour composited with 10% GBF and HMT flours could produce acceptable quality noodles as compared with normal typical control noodles. In the meantime, salted noodles incorporated with GBF, HMT-CS, and Hylon VII flour decreased the estimated glycemic index (EGI) dramatically. The result of this study concluded that incorporation of various sources of resistant starch flour could develop a low-GI noodle with good acceptability that may contribute to gastrointestinal health.
科研通智能强力驱动
Strongly Powered by AbleSci AI