BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis

计算机科学 相似性(几何) 基本事实 人工智能 正电子发射断层摄影术 神经影像学 深度学习 生成对抗网络 磁共振成像 模式识别(心理学) 核医学 图像(数学) 医学 放射科 精神科
作者
Jin Zhang,Xiaohai He,Linbo Qing,Feng Gao,Bin Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:217: 106676-106676 被引量:45
标识
DOI:10.1016/j.cmpb.2022.106676
摘要

Multi-modal medical images, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used for the diagnosis of brain disorder diseases like Alzheimer's disease (AD) since they can provide various information. PET scans can detect cellular changes in organs and tissues earlier than MRI. Unlike MRI, PET data is difficult to acquire due to cost, radiation, or other limitations. Moreover, PET data is missing for many subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. To solve this problem, a 3D end-to-end generative adversarial network (named BPGAN) is proposed to synthesize brain PET from MRI scans, which can be used as a potential data completion scheme for multi-modal medical image research.We propose BPGAN, which learns an end-to-end mapping function to transform the input MRI scans to their underlying PET scans. First, we design a 3D multiple convolution U-Net (MCU) generator architecture to improve the visual quality of synthetic results while preserving the diverse brain structures of different subjects. By further employing a 3D gradient profile (GP) loss and structural similarity index measure (SSIM) loss, the synthetic PET scans have higher-similarity to the ground truth. In this study, we explore alternative data partitioning ways to study their impact on the performance of the proposed method in different medical scenarios.We conduct experiments on a publicly available ADNI database. The proposed BPGAN is evaluated by mean absolute error (MAE), peak-signal-to-noise-ratio (PSNR) and SSIM, superior to other compared models in these quantitative evaluation metrics. Qualitative evaluations also validate the effectiveness of our approach. Additionally, combined with MRI and our synthetic PET scans, the accuracies of multi-class AD diagnosis on dataset-A and dataset-B are 85.00% and 56.47%, which have been improved by about 1% and 1%, respectively, compared to the stand-alone MRI.The experimental results of quantitative measures, qualitative displays, and classification evaluation demonstrate that the synthetic PET images by BPGAN are reasonable and high-quality, which provide complementary information to improve the performance of AD diagnosis. This work provides a valuable reference for multi-modal medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Radish完成签到 ,获得积分10
刚刚
aaaaaa完成签到,获得积分10
3秒前
天下一番完成签到,获得积分10
6秒前
我的白起是国服完成签到 ,获得积分10
8秒前
LEE123完成签到,获得积分10
10秒前
奶俊啵啵完成签到 ,获得积分10
12秒前
啊唔完成签到 ,获得积分10
13秒前
阳光万声完成签到 ,获得积分10
14秒前
疯狂吃辣完成签到 ,获得积分10
17秒前
wang完成签到 ,获得积分10
19秒前
向往生活发布了新的文献求助10
20秒前
20秒前
吃吃货完成签到 ,获得积分10
20秒前
李凤凤完成签到 ,获得积分10
24秒前
daheeeee发布了新的文献求助10
25秒前
葛怀锐完成签到 ,获得积分10
29秒前
杠赛来完成签到,获得积分10
29秒前
31秒前
daheeeee完成签到,获得积分10
32秒前
Lucas应助科研通管家采纳,获得10
33秒前
小张应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
科研通AI2S应助清风徐来采纳,获得10
34秒前
罗氏集团完成签到,获得积分10
34秒前
shen完成签到 ,获得积分10
35秒前
调皮从筠完成签到 ,获得积分10
37秒前
阿浮完成签到 ,获得积分10
37秒前
向往生活完成签到,获得积分10
37秒前
37秒前
ira完成签到,获得积分10
38秒前
周瓦特发布了新的文献求助10
42秒前
asheng98完成签到 ,获得积分10
44秒前
爆米花应助周瓦特采纳,获得10
47秒前
吴兰田完成签到,获得积分10
48秒前
榆木小鸟完成签到 ,获得积分10
48秒前
Simpson完成签到 ,获得积分10
50秒前
z1y1p1完成签到,获得积分10
50秒前
嬗变的天秤完成签到,获得积分10
54秒前
科研铁人完成签到 ,获得积分10
54秒前
情怀应助超帅的凌翠采纳,获得10
57秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784851
关于积分的说明 7768939
捐赠科研通 2440310
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624945
版权声明 600792