亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis

计算机科学 相似性(几何) 基本事实 人工智能 正电子发射断层摄影术 神经影像学 深度学习 生成对抗网络 磁共振成像 模式识别(心理学) 核医学 图像(数学) 医学 放射科 精神科
作者
Jin Zhang,Xiaohai He,Linbo Qing,Feng Gao,Bin Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:217: 106676-106676 被引量:57
标识
DOI:10.1016/j.cmpb.2022.106676
摘要

Multi-modal medical images, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used for the diagnosis of brain disorder diseases like Alzheimer's disease (AD) since they can provide various information. PET scans can detect cellular changes in organs and tissues earlier than MRI. Unlike MRI, PET data is difficult to acquire due to cost, radiation, or other limitations. Moreover, PET data is missing for many subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. To solve this problem, a 3D end-to-end generative adversarial network (named BPGAN) is proposed to synthesize brain PET from MRI scans, which can be used as a potential data completion scheme for multi-modal medical image research.We propose BPGAN, which learns an end-to-end mapping function to transform the input MRI scans to their underlying PET scans. First, we design a 3D multiple convolution U-Net (MCU) generator architecture to improve the visual quality of synthetic results while preserving the diverse brain structures of different subjects. By further employing a 3D gradient profile (GP) loss and structural similarity index measure (SSIM) loss, the synthetic PET scans have higher-similarity to the ground truth. In this study, we explore alternative data partitioning ways to study their impact on the performance of the proposed method in different medical scenarios.We conduct experiments on a publicly available ADNI database. The proposed BPGAN is evaluated by mean absolute error (MAE), peak-signal-to-noise-ratio (PSNR) and SSIM, superior to other compared models in these quantitative evaluation metrics. Qualitative evaluations also validate the effectiveness of our approach. Additionally, combined with MRI and our synthetic PET scans, the accuracies of multi-class AD diagnosis on dataset-A and dataset-B are 85.00% and 56.47%, which have been improved by about 1% and 1%, respectively, compared to the stand-alone MRI.The experimental results of quantitative measures, qualitative displays, and classification evaluation demonstrate that the synthetic PET images by BPGAN are reasonable and high-quality, which provide complementary information to improve the performance of AD diagnosis. This work provides a valuable reference for multi-modal medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
量子星尘发布了新的文献求助10
17秒前
AmyHu完成签到,获得积分10
32秒前
1分钟前
cc应助科研通管家采纳,获得30
1分钟前
充电宝应助nsc采纳,获得10
1分钟前
领导范儿应助nsc采纳,获得10
1分钟前
善学以致用应助nsc采纳,获得50
1分钟前
在水一方应助nsc采纳,获得10
1分钟前
科研通AI5应助nsc采纳,获得100
1分钟前
田様应助nsc采纳,获得10
1分钟前
Hello应助nsc采纳,获得10
1分钟前
小二郎应助nsc采纳,获得10
1分钟前
传奇3应助nsc采纳,获得10
1分钟前
Lucas应助nsc采纳,获得10
1分钟前
1分钟前
lovelife完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
贝贝完成签到 ,获得积分10
2分钟前
2分钟前
现代的曲奇完成签到 ,获得积分10
3分钟前
小马甲应助nsc采纳,获得10
3分钟前
Hello应助nsc采纳,获得10
3分钟前
万能图书馆应助nsc采纳,获得10
3分钟前
华仔应助nsc采纳,获得30
3分钟前
CipherSage应助nsc采纳,获得10
3分钟前
Jasper应助nsc采纳,获得10
3分钟前
在水一方应助nsc采纳,获得10
3分钟前
小马甲应助nsc采纳,获得10
3分钟前
慕青应助nsc采纳,获得10
3分钟前
脑洞疼应助nsc采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
孙老师完成签到 ,获得积分10
3分钟前
Ava应助nsc采纳,获得10
4分钟前
田様应助nsc采纳,获得10
4分钟前
小蘑菇应助nsc采纳,获得10
4分钟前
Hello应助nsc采纳,获得10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957061
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234121
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264