BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer’s disease diagnosis

计算机科学 相似性(几何) 基本事实 人工智能 正电子发射断层摄影术 神经影像学 深度学习 生成对抗网络 磁共振成像 模式识别(心理学) 核医学 图像(数学) 医学 放射科 精神科
作者
Jin Zhang,Xiaohai He,Linbo Qing,Feng Gao,Bin Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:217: 106676-106676 被引量:90
标识
DOI:10.1016/j.cmpb.2022.106676
摘要

Multi-modal medical images, such as magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used for the diagnosis of brain disorder diseases like Alzheimer's disease (AD) since they can provide various information. PET scans can detect cellular changes in organs and tissues earlier than MRI. Unlike MRI, PET data is difficult to acquire due to cost, radiation, or other limitations. Moreover, PET data is missing for many subjects in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. To solve this problem, a 3D end-to-end generative adversarial network (named BPGAN) is proposed to synthesize brain PET from MRI scans, which can be used as a potential data completion scheme for multi-modal medical image research.We propose BPGAN, which learns an end-to-end mapping function to transform the input MRI scans to their underlying PET scans. First, we design a 3D multiple convolution U-Net (MCU) generator architecture to improve the visual quality of synthetic results while preserving the diverse brain structures of different subjects. By further employing a 3D gradient profile (GP) loss and structural similarity index measure (SSIM) loss, the synthetic PET scans have higher-similarity to the ground truth. In this study, we explore alternative data partitioning ways to study their impact on the performance of the proposed method in different medical scenarios.We conduct experiments on a publicly available ADNI database. The proposed BPGAN is evaluated by mean absolute error (MAE), peak-signal-to-noise-ratio (PSNR) and SSIM, superior to other compared models in these quantitative evaluation metrics. Qualitative evaluations also validate the effectiveness of our approach. Additionally, combined with MRI and our synthetic PET scans, the accuracies of multi-class AD diagnosis on dataset-A and dataset-B are 85.00% and 56.47%, which have been improved by about 1% and 1%, respectively, compared to the stand-alone MRI.The experimental results of quantitative measures, qualitative displays, and classification evaluation demonstrate that the synthetic PET images by BPGAN are reasonable and high-quality, which provide complementary information to improve the performance of AD diagnosis. This work provides a valuable reference for multi-modal medical image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助fufu采纳,获得10
刚刚
youjun完成签到,获得积分10
刚刚
Abner发布了新的文献求助30
1秒前
zjq4302完成签到,获得积分10
1秒前
Damian完成签到,获得积分10
2秒前
2秒前
善学以致用应助koko采纳,获得10
2秒前
刘浩然发布了新的文献求助10
3秒前
3秒前
3秒前
陆倩完成签到,获得积分10
3秒前
紫电青霜完成签到,获得积分10
3秒前
Evan123完成签到,获得积分10
3秒前
孙传彬完成签到,获得积分10
4秒前
清和sama完成签到 ,获得积分10
4秒前
4秒前
三三完成签到 ,获得积分10
4秒前
4秒前
9202211125完成签到,获得积分10
4秒前
小羊完成签到 ,获得积分10
4秒前
整齐的惮完成签到 ,获得积分10
4秒前
然十六完成签到,获得积分10
5秒前
大模型应助就叫小王吧采纳,获得10
5秒前
Amy完成签到,获得积分10
5秒前
共享精神应助周舟采纳,获得10
5秒前
123456789完成签到,获得积分10
6秒前
巧语发布了新的文献求助10
6秒前
巧语发布了新的文献求助10
6秒前
巧语发布了新的文献求助10
6秒前
巧语发布了新的文献求助10
6秒前
巧语发布了新的文献求助10
6秒前
潇洒映冬发布了新的文献求助10
6秒前
牛牛完成签到,获得积分0
6秒前
xz完成签到,获得积分10
8秒前
成是非完成签到,获得积分10
8秒前
牛与马完成签到,获得积分10
9秒前
张婷婷发布了新的文献求助10
9秒前
9秒前
勤奋酒窝完成签到,获得积分10
10秒前
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5348074
求助须知:如何正确求助?哪些是违规求助? 4482327
关于积分的说明 13950024
捐赠科研通 4380886
什么是DOI,文献DOI怎么找? 2407159
邀请新用户注册赠送积分活动 1399667
关于科研通互助平台的介绍 1372955