控制器(灌溉)
参数统计
李雅普诺夫函数
递归最小平方滤波器
变量(数学)
趋同(经济学)
控制理论(社会学)
理论(学习稳定性)
收敛速度
自适应控制
控制(管理)
Lyapunov稳定性
数学
最小二乘函数近似
基质(化学分析)
计算机科学
非线性系统
统计
算法
钥匙(锁)
自适应滤波器
复合材料
经济增长
量子力学
材料科学
估计员
经济
农学
人工智能
生物
数学分析
物理
机器学习
计算机安全
作者
Anton Glushchenko,Vladislav Petrov,Konstantin Lastochkin
标识
DOI:10.1134/s0005117921040020
摘要
The aim of the present paper is to synthesize an adaptive control system with variable
adaptation-loop gain to compensate for the plant parametric uncertainty. In contrast to the
existing ones, such a system simultaneously (1) includes an algorithm for the automatic
calculation of the parameter adjustment law gain in the controller, which operates in proportion to
the current regressor value, thus permitting one to obtain an adjustable upper bound for the rate
of convergence of the plant output–controller parameter errors to zero (subject to the condition of
persistent excitation of the regressor); (2) does not require knowing the signs or values of the
entries of the plant gain matrix. The Lyapunov second method and the recursive least squares
method are used to synthesize such a control system. For this system, the stability and the
boundedness of the above-mentioned error values are proved, and estimates for the rate of their
convergence to zero are obtained. The efficiency of our approach is demonstrated by mathematical
modeling of an example of a plant corresponding to the statement of the research problem.
科研通智能强力驱动
Strongly Powered by AbleSci AI